透過您的圖書館登入
IP:3.133.151.199
  • 學位論文

整合銀染技術與矽奈米線太陽能電池陣列之生醫感測平台研究

A sensing platform utilizing silver enhancement and P-i-N silicon nanowire photovoltaic device array

指導教授 : 許鉦宗

摘要


本論文之研究目標為建立一個以光感測為基礎的生醫感測平台,平台中利用銀染反應增強並放大生物分子專一反應之訊號,並以P-i-N矽奈米線太陽能電池陣列之感光特性進行二次放大。本論文以NHS-biotin與不同濃度streptavidin蛋白間的專一性鍵結所產生的光電流變化進行量測並展現系統之偵測極限(Limit of Detection)。與世界領先團隊研究比較,本研究製作的矽奈米線元件,於未照光時,由電流-電壓曲線結果顯示符合一般二極體之基本特性,且於光源照射時展現出良好的光電特性: 開路電壓(VOC)為0.53 V、電流密度 (JSC)為0.7 mA/cm2、 填充因子(Fill factor)為71%、而最大轉換效率則高達0.83%。接著,利用特定蛋白上鍵結的金奈米粒子催化銀離子還原成銀金屬沉積於放大生物分子間的反應訊號,並透過P-i-N矽奈米線太陽能電池陣列,偵測不同濃度之生物晶片經銀染反應後產生不同的透光度,並將輸入之光訊號轉換成電訊號輸出。最後,透過我們所設計的量測平台,對於streptavidin蛋白質的動態偵測範圍可橫跨4個級距的變化量(4 nM ~ 4 pM) ,而最低偵測極限濃度則可達到4 pM。從實驗結果確認本研究整合銀染技術與矽奈米線太陽能電池陣列之生醫感測平台於生醫感測應用上可提供快速、簡便與穩定之介面。

並列摘要


A sensing platform integrated silver enhancement and P-i-N silicon nanowires (SiNWs) photovoltaic array was presented. Immunogold silver staining (IGSS) technique was adopted to enhance the biotin-streptavidin interaction on the glass slide. Then, the transparency of glass slide was characterized by the P-i-N silicon nanowires photovoltaic array under a light source with intensity of 31.8 mW/cm2. Compared with the results from world leading research team, the electrical characteristics of the P-i-N silicon nanowire photovoltaic array shows excellent diode behavior in dark, and exhibits an VOC of 0.53 V, a JSC of 0.7 mA/cm2, a fill factor (FF) of > 71%, and a maximum efficiency of 0.83% under illumination. A dynamic range of 4 orders of magnitude in streptavidin detection was demonstrated and the limit of detection (LOD) about 4 pM was achieved. We suspect that the proposed sensing platform can act as a fast, convenient, and stable sensing tool.

參考文獻


[1] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[2] W. K. Leutwyler, S. L. Bürgi, and H. Burgl, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, p. 933, 1996.
[3] Y. Cui and C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," science, vol. 291, pp. 851-853, 2001.
[4] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Letters, vol. 3, pp. 149-152, 2003.
[5] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, et al., "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, vol. 449, pp. 885-889, 2007.

被引用紀錄


柯佩汝(2015)。金屬輔助化學蝕刻法製備矽奈米線之熱電性質研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512100286

延伸閱讀