透過您的圖書館登入
IP:18.191.211.66
  • 學位論文

對金屬離子選擇性檢測之新穎化學感側探針與含 Ru 樹枝狀超分子做為太陽能應用之合成及研究

Synthesis and Study of Novel Chemosensing Probes for Selective Detection of Metal Ions and Ru-Based Supramolecular Dendrimers for Solar Cell Applications

指導教授 : 林宏州

摘要


摘要 本論文的主要目的是合成新型化學感測器結合探測金屬離子的選擇性檢測。在本論文中,我們介紹了幾個化學感測機制及分析高分子勝過相似結構小分子的原因。針對感測Pb2+ 和Hg2+,Zn2+ 的幾個化學感測器探針已由此研究開發出來。同時,我們已開發出在水溶液中針對有毒鉛離子金屬進行感測的新型噻吩苯並咪唑小分子。再者,我們討論了有關噻吩並咪唑基於比色法檢測Hg2+ 和Zn2+ 的螢光檢測聚合物。此外,我們探討論改變咪唑基之附屬側鏈結構後聚合物化學感測的靈敏度。除了這些新型化學感測分子外,我們合成了含單,雙和三Ru金屬的噻吩樹枝狀高分子並應用在光伏電池中。 在第一章中,我們合成了兩種新型dithieno-苯並咪唑基化合物(M2和A2),這裡顯示在水溶液中針對Pb2+ 各別具有12倍的螢光強度增加和10倍的螢光衰變。不同dithieno-苯並咪唑基(M1,M2,A1和A2)的量子產率,螢光壽命和靈敏度的取代基效應,針對S2-進行了調查,其對Pb2 +檢測是具有可逆性的。 我們在第二章中,合成出新的噻吩-咪唑基的聚合物P,這裡顯示透過色度和比例檢測,對Hg2+ 以及Zn2+ 的螢光檢測螢光的開啟響應增強其生存週期。它的比較聚合物M中沒有表現出任何類似的條件下,這進一步證實了在“S”和“N”雜原子通過金屬離子螯合的情況下,P對Hg2+ 和Zn2+ 具有檢測之能力。 在第三章合成出三種新型電子給體 - 受體與各種咪唑垂吊基的共軛聚合物(P1-P3),其優異的光、物理與電化學性能,使他們成為良好的傳導材料及化學感測的應用。此外,聚合物(P1-P3的)對H+ 和Fe2+ 的半水溶性液體表現出其具有明顯的感測能力。當滴定與H+,聚合物P1和P2螢光強度增強,吸收和PL有極大變化。然而,P3的顯示吸收度減少以及螢光強度下降,這是由於其具有靜態焠滅的情況發生。通過理論計算分析,P3電子分佈的異常行為與P1和P2的結果不同。此外,與P1(KSV = 2.01×106)和P2(KSV = 4.12×106)相比,P3(KSV = 1.03×107)表現出最好的Fe2+ 感應能力,此乃由於其提昇的分子導線效應。相對地,在Fe2+存在的條件下,P3的螢光壽命降低程度(將近11倍)比聚合物P1(4.6倍)和P2(6.2倍)有更大的下降。通過螢光 on-off-on 機制,在質子 - 質子和金屬化及去金屬化的化學感測中,分別得到了具可逆性的三乙胺(TEA)和乙二胺四乙酸二鈉(NA2-EDTA)/鄰菲羅啉來做為適合的配位基。氫核磁共振滴定透露P3與P1-P2的差異行為。據我們所知,之前並沒有運用由咪唑受體共軛主鏈聚合物做為Fe2+ 的感測器,且取決於其不同取代基會具有不同的敏感性。 在第四章,含單(G1RuG1,G2RuG2,G3RuG3),二(BT2RuG1,BT2RuG2,BT2RuG3)和三(TPA3RuG1,TPA3RuG2,TPA3RuG3)“Ru”超分子噻吩樹枝狀結構。進行了他們的光物理,電化學性能和熱性能研究。由於給體 - 受體,苯並噻二唑 - 己基噻吩芯雙“釕噻吩樹枝狀的結構,這些表現比其他兩個系列高出更多的光伏效率。三Ru含噻吩三苯核心的架構,由於他們的星型分支結構顯示中等的光伏性能。在三代雙Ru含樹突狀系列(G1-G2),在無任何添加劑或退火條件援助的情況下,BT2RuG3顯示最高的太陽能電池的效率0.77%。這種太陽能電池的效率值是在迄今所有含樹枝狀超分子金屬報告中最高的。 因此,得出結論為新型化學感測探針的金屬離子的高選擇性和高靈敏度的檢測已被開發出來。之後,針對取代基的變化靈敏度模型進行了討論。並對金屬含有噻吩的樹枝狀高分子合成及其光電特性也進行了描述。

並列摘要


Abstract The main objective of this dissertation is to synthesize novel chemosensing binding probe for selective detection of metal ions. In the introduction of the thesis we have described about several chemosensing mechanisms and the advantages of polymeric cheosensors over small molecular analogue. Several sensing probes have been developed for selective sensing of Pb2+, Hg2+, and Zn2+. Here we have developed novel thieno-benzo-imidazole based small molecules for the sensing of toxic metal ion Pb2+ in aqueous solutions. Again, we discussed about thieno-imidazole based homopolymer for the colorimetric detection of Hg2+ and fluorometric detection of Zn2+. Furthermore, we discussed about the amendment of sensitivity of chemosensing polymers upon variation of their attached imidazole based pendants. In addition to these novel chemosensing moieties, we synthesized mono, bis, and tris Ru containing thiophene dendrimers for the application in photovoltaic cell. In the first chapter we synthesized two novel dithieno-benzo-imidazole-based compounds (M2 and A2), which showed remarkable sensitivities towards Pb2+ by 12-fold enahancement and 10-fold decay of fluorescence, respectively, in aqueous solutions. Substituent effects of different dithieno-benzo-imidazole-based moieties (M1, M2, A1, and A2) on the quantum yields, fluorescence lifetimes and sensitivities to Pb2+ along with the reversibilities by S2- were investigated. In the second chapter we synthesized novel thieno-imidazole-based polymer P, which showed both colorimetric, and ratiometric detections of Hg2+ as well as fluorometric detection of Zn2+ via fluorescence turn-on response with augmented lifetime. Its model polymer M did not show any such sensing capability under similar conditions, which further confirmed the unique sensitivity of P towards Hg2+ and Zn2+ via the chelation of metal ions to both ‘S’ and ‘N’ hetero-atoms. In the third chapter three novel electron donor-acceptor conjugated polymers (P1-P3) with various imidazole pendants were synthesized, and their excellent photo-physical along with electrochemical properties led them to become suitable transduction materials for chemosensing applications. Herein, polymers (P1-P3) showed remarkable sensing capabilities towards H+ and Fe2+ in semi-aqueous solutions. Upon titration with H+, polymers P1 and P2 showed hypsochromic shifts of absorption and PL maxima with enhanced fluorescence intensities. However, P3 showed diminished abosorption as well as fluorescence intensities under similar conditions due to static quenchning. The anomalous behaviour of P3 compared with P1 and P2 was clarified by the electronic distributions via computational analysis. Furthermore, P3 (Ksv= 1.03×107) showed the best sensing ability towards Fe2+ compared with P1 (Ksv= 2.01×106) and P2 (Ksv= 4.12×106) due to its improved molecular wire effect. Correspondingly, fluorescence lifetime of P3 was decreased intensively (almost 11 times) than polymers P1 (4.6 times) and P2 (6.2 times) in the presence of Fe2+. By means of fluorescence on-off-on tactics, the chemosensing reversibilities in protonation-deprotonation and metallation-demetallation were achieved by triethylamine (TEA) and disodium salt of ethylenediaminetetraacetic acid (Na2-EDTA)/phenanthroline, respectively, as the suitable counter ligands. 1H NMR titrations revealed the unique behaviour of P3 compared with P1 and P2. To the best of our knowledge, no reports of Fe2+ sensors were provided by solo imidazole receptors conjugated to the main chain polymer with diverse sensitivity pattern depending on their attached substituents. In the fourth chapter mono (G1RuG1, G2RuG2, G3RuG3), bis (BT2RuG1, BT2RuG2, BT2RuG3) and tris (TPA3RuG1, TPA3RuG2, TPA3RuG3) ‘Ru’ containing supramolecular thiophene dendrimers were constructed. Their photophysical, electrochemical and thermal properties were investigated. Due to the donor-acceptor, benzothiadiazole-hexyl thiophene cored architecture in bis ‘Ru’ containing thiophene dendrimers, these showed higher photovoltaic efficiency than other two series. Tris ‘Ru’ containing architecture with terthiophene-triphenylamine core, showed moderate photovoltaic performance due to their star shaped branched structure. Among the three generations (G1-G3) of bis ‘Ru’ containing dendritic series, BT2RuG3 showed the highest solar cell efficiency 0.77% without the aid of any additives or anealing conditions. This solar cell efficiency value is the highest among all metal containing dendritic supramolecule reported so far. Thus in the conclusion, novel chemosensing probes for the selective and sensitive detection of metal ions has been developed. Amendments of sensitivity pattern upon the variation of substituents were discussed. Synthesis and photovoltaic properties of metal containing thiophene dendrimers were described.

並列關鍵字

Chemosensor Solar Cell

參考文獻


101. (a) Kim, F. S.; Ren, G.; Jenekhe, S. A. Chem. Mater. 2011, 23, 682. (b) Usta, H.; Facchetti, A.; Marks, T. Acc. Chem. Res. 2011, 44, 501. (c) Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 897. (d) Liao, L.; Cirpan, A.; Chu, Q.; Karasz, F.; Pang, Y. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2048. (e) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. (f) Torrent, M. M.; Rovira, C. Chem. Rev. 2011, 111, 4833. (g) Shao, B. Y.; Gong, X.; Heeger, A. J.; Liu, M.; Jen, A. K. Y. Adv. Mater. 2009, 21, 1972. (h) Cho, N.; Yip, H. L.; Davies, J. A.; Kazarinoff, P. D.; Zeigler, D. F.; Durban, M. M.; Segawa, Y.; O’Malley, K. M.; Luscombe, C. K.; Jen, A. K. Y. Adv. Energy. Mater. 2011, 6, 1148. (i) Huang, F.; Chen, K. S.; Yip, H. L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y. J. Am. Chem. Soc. 2009, 131, 13886.
113. (a) Chan, S. H.; Chen, C. P.; Chao, T. C.; Ting, C.; Lin, C. S.; Ko, B. T. Macromolecules 2008, 41, 5519. (b) Jung, I. H.; Yu, J.; Jeong, E.; Kwon, S.; Kong, H.; Lee, K.; Woo, H. Y.; Shim, H. K. Chem. Eur. J. 2010, 16, 3743. (c) Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. am. Chem. Soc. 2008, 130, 12828. (d) Xu, Y. Pang, Y. Chem. Commun. 2010, 46, 4070. (e) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Organic Letters 2010, 12, 4792. (f) Wu, P. T.; Xin, H.; Kim, F. S.; Ren, G.; Jenekhe, S. A. Macromolecules. 2009, 42, 8817. (g) Yue, W.; Zhao, Y.; Tian, H.; Song, D.; Xie, Z.; Yan, D.; Geng, Y.; Wang, F. Macromolecules. 2009, 42, 6510. (h) Liu, X.; Shu, X.; Zhou, X.; Zhang, X.; Zhu, J.; J. Phys. Chem. A. 2010, 114, 13370.
109. (a) Matuso, S.; Kiyomiya, K.; Kurebe, M. Arch. Toxicol. 1998, 72, 798. (b) Zhang, S. W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420. (c) Laisalmi, M.; Kokki, H.; Soikkeli, A.; Markkanen, H.; Yli-Hankala, A.; Rosenberg, P.; Lindgren, L.; Acta Anaesthesiol. Scand. 2006, 50, 982. (d) Liu, B.; Tian, H.; J. Mater. Chem. 2005, 15, 2681. (e) Huang, W.; Li, Y.; Yang, Z.; Lin, H.; Lin, H. Spectrochimica Acta Part A. 2011, 79, 471. (f) Berryman, O. B.; Sather, A. C.; Jr, J. R. Organic Letters 2011, 13, 5232. (g) Tong, H.; Wang, L.; Jing, X.; Wang, F. Macromolecules 2003, 36, 2584. (h) Zhou, G.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Macromolecules 2005, 38, 2148; (i) Bao, Y.; Liu, B.; Wang, J.; Tian, H. R. Bai, Chem. Commun. 2011, 47, 3957.
120. (a) Cheng, K. W.; Mak, C. S. C.; Chan, W. K.; Ng, A. M. C.; Djurii, A. B.; J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1305. (b) Man, K. K. Y.; Wong, H. L.; Chan, W. K.; Kwong C. Y.; Djurisic, A. B. Chem. Mater., 2004, 16, 365–367; (c) P. D. Vellis, J. A. Mikroyannidis, C. N. Lo and C. S. Hsu, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7702. (d) V. Duprez, M. Biancardo, H. Spanggaard and F. C. Krebs, Macromolecules, 2005, 38, 10436–10448; (e) O. Hagemann, M. Jorgensen and F. C. Krebs, J. Org. Chem., 2006, 71, 5546–5559. (f) K. K. Y. Man, H. L. Wong, W. K. Chan, A. B. Djurisic, E. Beach and S. Rozeveld, Langmuir, 2006, 22, 3368–3375; (g) Y. Pan, B. Tong, J. Shi, W. Zhao, J. Shen, J. Zhi and Y. Dong, J. Phys. Chem. C, 2010, 114, 8040–8047; (h) V. Stepanenko, M. Stocker, P. M€uller, M. B€uchner and F. W€urthner, J. Mater. Chem., 2009, 19, 6816–6826.
100. (a) Myochin, T.; Kiyose, K.; Hanaoka, K.; Kojima, H.; Terai, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 3401. (b) Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z. J. Am. Chem. Soc. 2009, 131, 1460. (c) Maity, D.; Govindaraju, T.; Inorg. Chem. 2010, 49, 7229. (d) Guliyev, R.; Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 13, 9007. (e) Kim, H. N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011, 40, 79. (f) Park, M.; Seo, S.; Lee, I. S.; Jung, J. H. Chem. Commun. 2010, 46, 4478. (g) Maity, D.; Manna, A. K.; Karthigeyan, D.; Kundu, T. K.; Pati, S. K.; Govindaraju, T. Chem. Eur. J. 2011, 17, 11152. (h) Guo, Z. Q.; Zhu, W. H.; Tian, H. Macromolecules 2010, 43, 739; (i) Maity, D.; Govindaraju, T. Chem. Eur. J. 2011, 17, 1410. (j) Son, H.; Lee, H. Y.; Lim, J. M.; Kang, D.; Han, W. S.; Lee, S. S.; Jung, J. H. Chem. Eur. J. 2010, 16, 11549. (k) Lee, H. Y.; Bae, D. R.; Park, J. C.; Song, H.; Han, W. S.; Jung, J. H. Angew. Chem. 2009, 121, 1265.

延伸閱讀