透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

新穎有機電洞傳輸材料應用於高效能鈣鈦礦太陽能電池之元件最佳化研究

Device engineering for highly efficient perovskite solar cells with novel organic hole-transporting materials

指導教授 : 刁維光

摘要


本論文探討鈣鈦礦太陽能電池之元件最佳化,分為正型以及負型鈣鈦礦太陽能電池元件,在正型元件中,分別使用一步旋塗法、添加劑法、快速沉積結晶法與溶劑退火法沉積鈣鈦礦薄膜,逐步的改善鈣鈦礦薄膜之平整性、結晶大小以及形貌,其光電轉換效率由一步旋塗法的無法測量,到溶劑退火法的11.67 %,確立了本實驗室正型鈣鈦礦太陽能電池的可行性,最後再輔以電洞傳輸層PEDOT:PSS的酸處理法,將正型鈣鈦礦太陽能電池之光電轉換效率提升至14.23 %。 而負型元件中,先以較穩定的快速沉積結晶法作為起點,其元件之光電轉換效率為14.43 %,並且與正型元件比較遲滯效應,與文獻報導之結果吻合,之後以加合物法沉積鈣鈦礦薄膜,並改善環境條件、電子傳輸層以及電極材料,使光電轉換效率提升至17.9 %,並且搭配元件之封裝,其壽命可超過1150小時,最後探討新穎電洞傳輸材料SM09、HTM797、AB-1-9以及Lsy001對於負型鈣鈦礦太陽能電池元件之影響,其元件光電轉換效率可媲美常用之電洞傳輸材料Spiro-OMeTAD。

關鍵字

鈣鈦礦 太陽能電池

並列摘要


In this thesis, we discuss about optimization of perovskite solar cells. One is p-i-n perovskite solar cells device, the other is n-i-p device. For p-i-n device, I use four kinds of method to deposited perovskite thin film. First is one step spin-coating process. Second is additive method. Third is fast deposition crystallization. Fourth is solvent annealing. At first I use one step spin-coating process to fabricate device, but I can’t measure power conversion efficiency. Then use additive method got little efficiency. Finally, the efficiency arrived 11.67 % by using Fast deposition crystallization combine solvent annealing. And then optimize PEDOT:PSS layer by using acid treatment, the power conversion efficiency arrived to 14.23 %. For n-i-p device, I use Fast deposition crystallization method to fabricate the device, the power conversion efficiency is 14.43 %, and compare hysteresis effect with p-i-n device. The result is consistent with paper’s report. And then use adduct method to deposited perovskite thin film. After change surrounding, electron transport layer, and electrode material, the power conversion efficiency arrived 17.9 %. By using UV glue to encapsulate device, the device lifetime over 1150 hours. Finally, we discuss the effect of novel hole transport material SM09, HTM797, AB-1-9, Lsy001, and using these material the device power conversion efficiency is comparable with Spiro-OMeTAD.

並列關鍵字

Perovskite Solar cells

參考文獻


2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
3. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
4. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2.
5. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-647.
6. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.

延伸閱讀