透過您的圖書館登入
IP:3.145.111.183
  • 學位論文

超高速(>40GHz)低驅動電壓(<2V)雙空乏區消逝波波導行波式致電吸收調制器

Evanescently-Coupled Dual-Depletion-Region Traveling-Wave Electroabsorption Modulator with High-Speed(>40GHz) and Low-Driving-Voltage(<2V) Performance

指導教授 : 許晉瑋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在現今高速的光通信系統中,高速的(>10Gbits/sec) 光電調制器為通信系統中非常關鍵性的一部分。而為了達到高速,元件的電容必須縮小,根據 的公式,為了縮小電容,主動區的面積必須縮小(2μm×75μm),但一再縮小主動區,會遇到以下問題:光偶合損耗(coupling loss)變大、不易於準確劈裂以及難於量測。現在普遍的解決的方法有以再磊晶( re-growth )的方式去製作被動的光波導來增加元件的總長度等,但再磊晶等方法是一種較為複雜的製程。所以我們設計了一種在主動區前加上一個經由設計後的消逝波波導管,它可以將光從波導管中導波至主動區,讓我們直接縮短主動區長度而不會縮短元件總長度,因此不會遇到因縮小主動區時所遇到的問題。而量子井以及雙空乏區的設計,也同時改善了元件對極化的敏感度以及高速與驅動電壓間的扺觸。 實驗結果驗證,我們元件的設計結構確實降低了驅動電壓 (V20dB=1.65V),在穿透係數(S21)的量測中f3dB~60GHz,而電-光響應頻寬大於45 GHz 的表現,經計算後的FOM大於27.19,與近年來光調制器的FOM相比,我們元件的FOM得到極大的改善。

並列摘要


We demonstrate a novel structure of traveling-wave electro-absorption modulator (EAM) at a 1.55um wavelength. By incorporating the epi-layer structure of Dual-Depletion-Region Electro-Absorption Modulator (DDR EAM) with an evanescently-coupled optical waveguide and the traveling-wave electrodes, the demonstrated device can achieve low electrical return loss (-20dB at ~60GHz), wide 3-dB bandwidth (60GHz) of electrical transmission loss, wide electrical-to-optical (EO) bandwidth (45GHz), and low 20dB driving-voltage (V20dB, 1.65V) with extremely low polarization dependency. This new structure can not only achieve excellent figures-of-merit but release the burden imposed on downscaling the core width or length of high-speed/low driving-voltage EAM without using epitaxial re-growth or ion-implantation techniques to isolate the active and passive regions.

參考文獻


[1] S. Kodama, T. Yoshimatsu, and H. Ito, “320Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator,” Electronics Letters, vol. 39, pp.383-385, Feb., 2003.
[2] H.-F. Chou, Y.-J. Chiu, A. Keating, J. E. Bowers, and D. J. Blumenthal,“Photocurrent-assisted wavelength (PAW) conversion with electrical monitoring capability using a traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 16, pp.530-532, Feb., 2004.
[3] Joseph C. Palais, “Fiber optic communications”, fourth edition,2001.
[4] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,”IEEE Photonics Technol. Lett., vol. 9, pp. 25-27, 1997.
[5] C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-18, 9, pp. 259-264, 1982.

延伸閱讀