透過您的圖書館登入
IP:3.143.9.115
  • 學位論文

利用低氣壓超塑性成型製程以及AA5052鋁合金製作微流道

Fabrication of Micro-flow Channel with AA5052 by Low-Pressure Superplastic-like Forming

指導教授 : 李 雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為了要改善燃料電池中釩氧化還原液電池(VRB)的性能,可以藉由增加雙極板中微流道的數量(縱橫比)以及通道的深度提高效率。在諸多研究方法中,製造雙極板中良好縱橫比的微流道,多是以高壓氣吹成型法來進行吹製。為了能以不同吹製方法來得到良好的縱橫比以及成型性之微流道,本研究將探討超塑性成型(superplastic-like forming)採用AA5052鋁合金其中不同低壓壓力以及溫度條件下對最終成形性的影響,本超塑性成型製程為先進行預成形後再用以低壓力氣體吹製成形。另外,藉由ANSYS有限元素模擬軟體進行模擬形成的過程以及結果,來驗證實驗結果以及分析。 本研究結果發現,AA5052鋁合金藉由超塑性成型在溫度450℃以及壓力1MPa的成形條件下,比較其他條件下、流道具有最佳的寬深比(0.5mm厚度以及0.591寬度)。而比起其他成形方式,超塑性成型具有僅利用較低壓力就可以製造金屬二極板微流道的優勢。

並列摘要


One of ways to improve Redox-flow batteries or particularly vanadium Redox flow battery (VRB) performance is by increasing micro-flow channels aspect ratio on bipolar plates. Aspect ratio increments are obtained by the increasing of channel depth. There are many research investigate several methods to produce a high aspect ratio of the micro-flow channel on bipolar plate, but it seems a high pressure required in overall forming method. To produce micro-flow channel with high aspect ratio, this research investigates forming pressure and temperature affect into the final geometry by low-pressure superplastic-like forming of non-superplastic aluminum alloy 5052. In this superplastic-like forming, a hot draw mechanical pre-forming (HDMP) are performed before applied gas blow (superplastic) forming. Furthermore, finite element model by ANSYS LS-DYNA was done to simulate this forming process. The simulation result was used to verify the validity of the experiments result. The research indicates that the 0.591 aspect ratio of aluminum alloy 5052 micro flow channel with 0.5 thicknesses produced by low pressure superplastic-like forming (450 °C and 1 MPa). Compared to the other forming process, superplastic-like forming has advantage that only low pressure needed to produce micro-flow channel at metallic bipolar plates.

參考文獻


[18] Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, International Journal of Machine Tools and Manufacture, 48 (2008) 1509-1518.
[19] Y. Luo, S.G. Luckey, W.B. Copple, P.A. Friedman, J. of Materi Eng and Perform, 17 (2008) 142-152.
[4] A.P. Manso, F.F. Marzo, M.G. Mujika, J. Barranco, A. Lorenzo, International Journal of Hydrogen Energy, 36 (2011) 6795-6808.
[22] F. Jarrar, M. Liewald, P. Schmid, A. Fortanier, J. of Materi Eng and Perform, 23 (2014) 1313-1320.
[1] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Advanced Energy Materials, 1 (2011) 394-400.

延伸閱讀