透過您的圖書館登入
IP:3.149.229.253
  • 學位論文

The Effect of Applying Solar Photovoltaic for Building Energy Conservation: A Case Study in Taiwan

The Effect of Applying Solar Photovoltaic for Building Energy Conservation: A Case Study in Taiwan

指導教授 : 黃榮堯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


時至今日,氣候變遷與資源消耗議題儼然成為世界各國關注之重點。建築及相關營 建產業的高耗能行為已對環境造成嚴重衝擊。各國開始探討發展再生能源之可能與機會, 其中太陽能是公認的低汙染能源來源,而太陽光電系統(Photovoltaic, PV)之使用將是降低 環境衝擊的解決方案之一。雖然太陽光電系統具備發展潛力,惟其初期建置之成本過高, 反而造成推行之窒礙。針對提高太陽光電系統之使用率,政府單位與相關投資人必須了解 太陽光電系統所帶來之效益,特別是溫室氣體(greenhouse gases, GHG)及整體成本等。為 了優化與分析太陽光電系統之效能與產出,本研究係利用電腦資訊模型(building information modeling, BIM)模擬太陽光電系統於建築物屋頂之可能,並探討太陽光電系統 設置於屋頂之傾斜角度、成本回收期與二氧化碳(CO2e)等因素。本研究主要研究目的包含 (1)調查太陽光電系統設置於屋頂之傾斜角度與情境之差異,並分析不同差異對二氧化碳 減量與投資成本回收期之影響;(2)分析太陽光電系統架設方位之經緯度差異對傾斜角度 與情境之影響。本研究以國立中央大學圖書館為模擬標的,模擬成果顯示當太陽光電系統 面向西南方10°且傾斜角度20°時,該建築物之太陽光電系統每年最大可產生181.1MWh之 電力,相當於節省125噸的二氧化碳,最短投資回收期為19.71年。透過本研究之模擬成果 發現,當所在國家其經緯度大於或等於10°時,最佳的太陽光電系統傾斜角度等於該地區 經緯度(之十位數加或減10° (opt-sys range = roundown(, -1) ± 10°);當該國家其經緯度小於 10°時則加10°(opt-sys range = roundown(, -1) + 10°)。此結果亦顯示,最佳的太陽光電系統接 收範圍為 opt-sys range = - 20° to 20°。本研究之成果將可提供建築師、相關投資人及政府等 單位從環境、能源及經濟等面向評估太陽光電系統之效能。

並列摘要


Nowadays, climate change and resource depletion issues become a major concern throughout the world. The building and construction sectors have been identified as one of the major contributors to global environmental impact due to their high energy consumption. Taiwan has several opportunities to develop it potentially abundant renewable energy sources. Solar energy is considered as a less-pollutant renewable energy which could be used in order to deal with the environmental impacts issues, and the application of Photovoltaic system (PVs) is one of the best solutions. However, the high initial cost is a big barrier for applying Photovoltaic (PV) technology, so the governments or investors need to clearly understand the benefit of the PV application in terms of greenhouse gases (GHG) reduction and in terms of costs as well. In order to optimize the output performance of PVs, the factors which directly affect the efficiency of PVs should be considered. This study presents a simulation approach by using building information modeling (BIM) tools to investigate solar potential on the building’s rooftop. The aim of this study is to investigate the impacts of the tilt angle and orientation, and latitude of rooftop PVs on generated electricity, CO2 emission (CO2e) savings, and payback time in terms of cost. The result show that the PVs on the rooftop of the main library in National Central University (NCU) can generate the most annual electricity (181.1MWh) and save the most annual CO2e (125 Metric tons) when PVs is installed at a tilt angle of 20° and oriented at the rotated angle of 10° towards the West from the South, and the minimum payback time is 19.71 years. It is concluded that for the countries with the latitude is greater than and equal to 10°, the optimum tilt angle range of photovoltaic system is equal to latitude ( of the site rounded down to the nearest ten and then minus and plus 10° (opt-sys range = roundown(, -1) ± 10°) and for the countries with the latitude is less than 10°, (opt-sys range = roundown(, -1) + 10°). The results show that the optimum orientation range where the photovoltaic system receives the most insolation is opt-sys range = - 20° 20°. The findings provide technical information for architects, investors, etc., to assess PVs which could contribute to the environmental, energy, and economic aspects.

參考文獻


1. Life-cycle environmental effects of an office building J Infrastruct Syst 2003:157–66, 9_4.
2. Zabalza Bribia´n I, Aranda Uso´n A, Scarpellini S. Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 2009; 12:2510–20.
3. Climate change. Synthesis report, intergovernmental panel of climate change. See, http://www.ipcc.ch/ipccreports/ar4-syr.htm; 2007.
5. Natural Environment, http://unfccc.epa.gov.tw/unfccc/english/04_our_efforts/02_efforts.html
6. Pérez-Lombard, L., J. Ortiz, and C. Pout, A review on buildings energy consumption information. Energy and Buildings, 2008. 40(3): p. 394-398.