透過您的圖書館登入
IP:34.238.138.162
  • 學位論文

高效率有機-無機鈣鈦礦薄膜太陽能電池製程與電光特性之研究

Fabrication and Optoelectronic Properties of High Efficient Organic-Inorganic Thin-Film Perovskite based Photovoltaics

指導教授 : 陳昇暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來全球對於綠色能源的概念漸漸興起,故而太陽能電池的研究發展備受矚目,其中鈣鈦礦結構 (perovskite absorber , PA) 薄膜太陽能電池自2012年進展最為迅速,鈣鈦礦結構是晶體結構的名稱,應用於太陽能研究中的吸光材料是以有機-無機物交錯而構成。其中以CH3NH3PbI3 、CH3NH3PbI3-x Clx 及CH(NH2)2PbI3為吸光層的電池中,各種結構的太陽能電池之功率轉換效率 (Power Conversion Efficiency , PCE) 的元件都有將近10% 以上的表現。 本篇論文使用溶液製程法來製備高效率的鈣鈦礦 (CH3NH3PbI3) 薄膜太陽能電池,並利用掃描式電子顯微鏡、二維X光繞射儀、吸收光譜儀、螢光光譜儀、奈秒時間解析螢光光 譜儀與拉曼光譜儀,研究鈣鈦礦薄膜的結構與光電特性,藉此優化出能於本實驗室中製作,且具有最高功率轉換效率之元件的製程條件,並了解各層材料於不同製程條件下的特性。而本篇論文的溶液製程主要是採用旋轉塗佈的方式,其優點在於能夠以低耗能、低成本與快速的方式製備鈣鈦礦薄膜太陽能電池。 本篇論文的元件架構為:Ag/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。 Ag (銀) 與ITO (氧化銦錫) 各別為電池的陰極與陽極;[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) 與Poly (3-hexylthiophene-2,5-diyl) (PEDOT:PSS)各別是電池的電子傳遞層 (electron transport layer , ETL) 與電洞傳遞層 (hole transport layer , HTL);CH3NH3PbI3則是電池的吸光層。以旋轉塗佈法製作PEDOT:PSS薄膜、CH3NH3PbI3薄膜與PC61BM薄膜,最後使用真空熱蒸鍍的方式製作陰極層Ag,在優化製程參數下所得到最高效率之元件的功率轉換效率 (PCE) 達12.54%;短路電流 (Jsc) 達20.51 mA/cm^2,開路電壓 (Voc) 達0.93 V,填充因子 (FF) 達65.67%。

並列摘要


In recent years, the concept of greenergy is gradually risen in the global. Therefore, the research and development of solar cells get more attention. The power conversion efficiency (PCE) of perovskite absorber (PA) based solar cells have grown rapidly since from 2012. Perovskite is the name of a kind of crystal structure. The structure which is organic and inorganic materials interleaving constitution has been used as the light absorber in solar cells. CH3NH3PbI3, CH3NH3PbI3-XClX, and CH(NH2)2PbI3 thin films have been used as the light absorber, which can produce high PCE (> 10%) using different device structures. In this thesis, the CH3NH3PbI3 based solar cells were fabricated using the one-step solution process with an in-situ washing treatment. We also use scanning electron microscope (SEM), two-dimensional X-ray diffractometer (2D-XRD), absorbance spectrum, photoluminescence (PL), nanosecond time-resolved photoluminescence (NTR-PL) and Raman spectroscopy to explore the structural and optoelectronic properties of perovskite thin films. After above mentioned analyses, the optimized parameters for device fabrication in our laboratory were obtained. We used the spin-coating process to fabricate the thin films. This process has some advantages about spending less time consuming and money. The architecture of our solar cells is: Ag / PCBM / CH3NH3PbI3 / PEDOT: PSS / ITO / glass. Ag and ITO are used as the cathode and anode electrodes, respectively. [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) and poly (3-hexylthiophene-2,5-diyl) (PEDOT:PSS) are used as the electron transport layer (ETL) and hole transport layer (HTL) ,respectively. CH3NH3PbI3 film is the light absorber of the device. The PEDOT:PSS film, CH3NH3PbI3 film and PCBM film are fabricated by spin coating method. Finally, the Ag film was deposited on top of the PCBM film using a vacuum thermal evaporation method. In our research, the highest PCE of the perovskite solar cell is 12.54%. The short-circuit current density (Jsc) is 20.51 mA / cm2; the open-circuit voltage (Voc) is 0.93 V; and the fill factor (FF) is 65.67%.

並列關鍵字

Perovskite Solar cell

參考文獻


[20] 吳勇蒼, "分離式二氧化鈦奈米管在染料敏化太陽能電池之運用," 碩
Boix, N. Mathews, Flexible, "low-temperature, solution processed ZnO-
[65] A. Ates, M.A. Yildirim, M. Kundakci, M. Yildirim, "Investigation of
[43] P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J.J.
[9] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.

延伸閱讀