透過您的圖書館登入
IP:18.223.209.180
  • 學位論文

以干涉微影製作之次波長微結構提升非晶矽太陽能電池的光學吸收率

a-Si thin film optical absorption improve by subwavelength structures

指導教授 : 張正陽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


干涉微影具有大面積製作、快速、低成本、可調整周期等優點,不論是奈米等級的蝕刻,製作光罩在太陽能電池,光子晶體上都有廣泛的應用。在本研究中利用干涉微影的方法在製作週期500nm~ 1000nm的次波長結構,應用在非晶矽薄膜上期望增加吸收率,利用模擬和實驗討論每一層結構對穿透率、霧度(Haze ratio)、吸收率的影響,討論模擬和實驗的正確性。在模擬中、非晶矽太陽能電池的光學吸收率,在週期為500nm的次波長結構有最佳的光學吸收率,增益了20.5%的光學吸收率。當有背反射層時,在週期為300nm時有最佳的吸收率比沒有結構的太陽能電池增益了18.5%的吸收率。而在ITO厚度是70nm時有最好的抗反射效果。 本實驗中製作週期500nm~1000nm的結構非晶矽薄膜,結果發現在長波段或在短波段部分吸收率都有提高,尤其是在結構週期為500nm,深度130nm的微結構薄膜有最好的吸收率,比沒有結構的太陽能電池增益了42.8%的光學吸收率。而在鍍上一層銀的背反射層之後再量測一次非晶矽薄膜的吸收率,發現有加背反射層非晶矽薄膜吸收的波段變廣,週期500nm的結構吸收收率增益41%。

並列摘要


Interference lithography is a good method which is large area of production, rapid, low-cost fabrication, and adjustable period, whether nano level etching mask in the production of solar cells, photonic crystals are widely used. In this study, we use interference lithography in the production period between 500nm to 1000nm found that the application of a-Si thin film on the expected increase in the absorption. The use of simulations and experiments is to discuss the effect of each layer in transmittance, Haze ratio and absorption. Then we discuss the accuracy of simulation and experiment. In the simulation, the a-Si thin film’s optical absorption is increase at the structure period of sub-1000nm.Structure film has the best optical absorption, optical absorption gain 20.5% at period 500nm. When it has back-reflection layer, period 300nm has the best absorption which is gain of 18.5 percent. In the ITO thickness is 70nm has the best anti-reflective effect. In this study, the production period is between 500nm to 1000nm in the structure of a-Si thin film was found that the absorption is increased in the part of long wavelength and short wavelength, especially in the structure period of 500nm, depth 130nm which absorption has gain 42.8% than those without structure. When it Coated a layer of silver as the reflective layer back after an a-Si film, the measurement of absorption is found that the absorption is increases of broad-band, and the absorption gain 41% at structure period 500nm.

參考文獻


[20] 表面結構及基板圖案對發光二極體光功率之影響 倪慶懷
[1]. Dewan, R. and D. Knipp, Light trapping in thin-film silicon solar cells with integrated diffraction grating. Journal of Applied Physics, 2009. 106(7).
[2] Ferry, V.E., et al., Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009. 95(18).
[4] Isabella, O., et al., Modulated surface textures using zinc-oxide films for solar cells applications. Physica Status Solidi a-Applications and Materials Science, 2010. 207(3): p. 642-646.
[5] Light scattering properties of surface textured substrates Phys. Status Solidi C 7, No. 3–4, 945– 948 (2010)

延伸閱讀