透過您的圖書館登入
IP:3.17.6.75
  • 學位論文

具氮化鋁鎵/氮化鎵蕭基二極體之氮化銦鎵交流發光二極體

InGaN-Based Alternating Current Light-Emitting Diodes with AlGaN/GaN Schottky Barrier Diodes

指導教授 : 綦振瀛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要在探討如何將氮化鋁鎵/氮化鎵蕭基二極體積體化整合於氮化銦鎵交流發光二極體晶片上。 我們嘗試兩種在垂直結構上整合蕭基二極體與發光二極體之方法: (1) AlGaN/GaN蕭基二極體結構再成長於InGaN/GaN發光二極體結構上,(2) InGaN/GaN發光二極體結構再成長於AlGaN/GaN蕭基二極體結構上。但因為兩種方法皆面臨到蝕刻精準不易控制的問題,因此我們改用了選擇性區域再成長之方法,製作交流發光二極體之整合元件。其中我們利用具有AlGaN/AlN多層堆疊緩衝層之AlGaN/GaN蕭基二極體元件,達成順偏電流20 mA時操作電壓為2.75 V,與逆偏-200 V時漏電流大小為75 μA等優良特性,並藉由黃光微影製程方式成功將AlGaN/GaN蕭基二極體與InGaN/GaN發光二極體元件積體化於同一交流發光二極體晶片上。而交流發光二極體之發光面積約為晶片面積的88.4 %,其蕭基二極體僅占整體交流發光二極體面積之3.3 %。與傳統僅由LED所組成之交流發光二極體的特性做比較,在同樣直流偏壓130 V下,新型結合蕭基二極體之交流發光二極體提升了整體發光面積約47 %,而發光強度提升約28 %。

並列摘要


In this study, we investigated the detailed mechanisms on fabricating InGaN-based Alternating Current Light-emitting diodes (AC-LEDs) with AlGaN/GaN Schottky Barrier Diodes (SBDs). We tried two methods for integrating vertical structures combined with SBDs and LEDs: (1) AlGaN/GaN SBD structure re-grown on InGaN/GaN LED structure, (2) InGaN/GaN LED structure re-grown on AlGaN/GaN SBD structure. Both of them had an accuracy problem of dry etching, so we developed a selective re-growth method to fabricate AC-LED incorporated with SBDs. In the SBD structure, we employed AlGaN/AlN multi-layers as the buffer layer to acquire the good device characteristics of an operation voltage of 2.75 V at 20 mA and a low leakage current of 75 μA at -200 V. Then we successfully demonstrated the integration of InGaN-based AC-LED chip with GaN SBDs by utilizing the photolithography process. The AC-LED has an emission area of about 88.4 % of the total chip area, while the integrated SBDs in a Wheatstone bridge (WB) scheme occupy only 3.3 % of the total chip area. Compare to the conventional WB AC-LEDs, the AC-LED integrated with SBD WB has a larger emission area by about 47 % and exhibit a higher integrated luminescence intensity by about 28 % at 130 V DC.

參考文獻


[1] S. Nakamura, T. Mukai, and M. Senoh, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8-L11 (1993).
[3] J. Cho, J. H. Chae, H. Kim, H. Kim, J. W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, E. Yoon, and J. Jung, “Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry,” Jpn. J. Appl. Phys., vol. 46, pp. L1194-L1196 (2007).
[4] H. H. Yen, H. C. Kuo, and W. Y. Yeh, “Characteristics of Single-Chip GaN-Based Alternating Current Light-Emitting Diode,” Jpn. J. Appl. Phys., vol. 47, pp. 8808-8810 (2008).
[5] G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. Park, “Efficient Alternating Current Operated White Light-Emitting Diode Chip,” IEEE Photon. Technol. Lett., vol. 21, pp. 33-35 (2009).
[6] N. C. Chen, Y. N. Wang, Y. S. Wang, W. C. Lien, and Y. C. Chen, “Damage of light-emitting diodes induced by high reverse-bias stress,” J. Cryst. Growth, vol. 311, pp. 994-997 (2009).

延伸閱讀