透過您的圖書館登入
IP:3.145.47.253
  • 學位論文

600 V溝渠式逆向導通絕緣閘雙極性電晶體設計與分析

A Design and Analysis of 600V Trench Gate Reverse Conducting Insulated Gate Bipolar Transistor

指導教授 : 辛裕明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


大多數電子產品的發展趨勢一直是以消耗更多的電力來實現高性能及多功能,在能源產業設備使用的半導體中,功率半導體所佔的比例超過50 %,並且被廣泛應用於家電、電腦、汽車及鐵路等領域,由於這些應用設備有望擴大普及,使功率半導體使用的比例上升,功率半導體市場將逐年擴大成長。 隨著原油價格逐年高漲,開發節能產品與新能源產品的時機在全球日趨成熟,取代汽油車的電動汽車被全力推進。在功率半導體中,IGBT市場規模擴大的背景就在於混合動力車及電動汽車的需求增加。目前,汽車廠商競相發佈了增產混合動力車的計劃,並打算以混合動力車一舉取代原來的汽油車。由此更可見IGBT在未來市場發展上存在著無窮潛力。 近年來更由於半導體元件積體化(Integration)加上IGBT模組在電路應用中時常並聯二極體(Diode)來使用,為了節省電路上不需額外的零件,因此發展出將IGBT和diode結構結合在一起的逆向導通絕緣閘雙極性電晶體(Reverse Conducting- IGBT)的結構,本篇論文將使用薄晶圓(Thin Wafer)技術搭配場終止(Field-Sop)結構設計600 V RC-IGBT,並針對如何達到低導通壓降、高崩潰電壓與改善RC-IGBT之逆向恢復特性作一系列的研究與探討,設計出最佳化RC-IGBT。 經由Silvaco 軟體ATHENA與ATLAS模擬元件製程方法並進行電性分析與設計,結果顯示用具有N載子儲存層(Carrier Stored, CS n layer)RC-IGBT能達到600 V以上的耐壓,且與沒有N載子儲存層RC-IGBT相較之下能有效降低導通壓降約13 %,還能有效改善內部二極體逆向恢復特性,使逆向峰值電流(IRAM)降低約0.4 A,並使逆向恢復電荷(Qrr)減少約17 %。

並列摘要


Most of the development trend of electronic products has always been to achieve high performance and multi-function by consuming more power. In the energy industry equipment used by semiconductor, power semiconductors, the proportion of over 50%. Power semiconductors are widely used in the fields of home appliances, computers, automotive and railway. Since these applications are expected to expand the popularity of the use of power semiconductors has risen, the power semiconductor market will expand year by year growth. With crude oil prices rising year by year, the timing of the development of energy-saving products and energy products in the world is becoming increasingly mature, full propulsion of electric vehicles to replace petrol cars. In power semiconductors, IGBT market scale expanding background is an increase in demand for hybrid and electric cars. Recently, car manufacturers competing yield hybrid plan, and intends to replace the original car''s gasoline hybrid in one fell swoop. Thus more visible IGBT there is enormous potential in the future market development. In recent years, because semiconductor components were integrated and the IGBT modules which paralleled diode were used in circuit applications, Reverse Conducting- IGBT that could combine the IGBT and Diode structure were developed, in order to save the circuit from additional parts. In this paper, I will use the Thin Wafer technology and Field-Sop structure to design 600V RC-IGBT. In addition, I will do a series of research and discussion for how to achieve low on-state voltage, high breakdown voltage and improve the reverse recovery characteristics of RC-IGBT, designing to optimize RC-IGBT. Through the Silvaco software ATHENA and ATLAS simulate component process method and conduct electrical analysis and design, showed the RC-IGBT that has Carried Stored N layer can reach more than 600 V withstand voltage. Compared with the RC-IGBT without Carried Stored N layer , it can effectively improve the on-state voltage about 13% and improve built-in diode reverse recovery performance, that the reverse peak current decreased approximately 0.4A and the reverse recovery charge can reduce more than 17%.

參考文獻


[9] 林書賢, “具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體,” 國立中央大學電機工程學系碩士論文, 2011。
[7] 林毓誠, “600V 新型溝渠式載子儲存絕緣閘雙極性電晶體之設計,” 國立中央大學電機工程學系碩士論文, 2011。
[3] 王晟康, “注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析,” 國立中央大學電機工程學系碩士論文, 2011。
[2] H. Takahashi, A. Yamamoto, S. Aono, T. Minato, “1200V Reverse Conducting IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 133-136, 2004.
[1] B.J. Baliga, Fundamentals of Power Semiconductor Devices, Springer Verlag, pp736-754 ,2008.

延伸閱讀