透過您的圖書館登入
IP:18.217.228.35
  • 學位論文

應用拓樸最佳化技術於飛輪轉子之設計

Flywheel Rotor Design Using Topology Optimization

指導教授 : 鄭志鈞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


高效率儲能與釋能之間的轉換,以及優異的循環能力使得飛輪儲能系統比其他的儲能系統更引人注目。應用拓樸最佳化技術,以最大化剛性為目標函數,並在特定體積的限制條件下,來設計高轉速飛輪轉子。此外,應力亦考慮在整體設計概念中。最大應力值不超過所設定的範圍。為了縮短尋找最佳解的時間,本文使用一階最佳化技術“移動式漸進法(Method of moving asymptotes, MMA)”,並且搭配“材料連續逼近法(Continuous approximation of material distribution, CAMD)”防止棋盤方格問題發生。由結果可以清楚看出飛輪轉子高轉速所產生之離心力會讓結構隨著旋轉方向不同而發展不同的趨勢,以及最大應力不會超過預期的安全範圍。

並列摘要


The high charge and discharge rates, as well as the high cycling capability make flywheels attractive as compared to other energy storage devices. A technique based on topology optimization in designing a high-speed rotating flywheel rotor with an objective of maximal stiffness subject to a limited volume. Moreover, the stress in the flywheel is taken into consideration, so the maximal stress in the flywheel will not exceed a prescribed value. To search the objective more efficiently, the method of moving asymptotes (MMA), a first-order optimization technique, was employed. And the method of continuous approximation of material distribution (CAMD) is also adopted to avoid checkerboard problem in the topology optimization. Results show the clear topology layout of flywheel was obtained using proposed method. And the maximal stress is not larger than the designated safe value as expected.

參考文獻


[31] Bin Zheng, Xiao-Jun Wang, Tao Ma, Hong-Zhong Huang, Huanwei Xu,
[1] Bitterly, J.G., 1988, “Flywheel technology: past, present, and 21st century
projections,” IEEE AES Systems Magazine, 13, pp.13-16.
technology for energy sustainability,” Energy and Buildings, 39, pp. 599-604.
current and future energy storage technologies for electric power

被引用紀錄


郭育昕(2014)。應用拓樸最佳化技術於負剛性系統之設計〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201613571905

延伸閱讀