透過您的圖書館登入
IP:3.143.218.146
  • 學位論文

鋅空氣燃料電池陰極改善暨電池性能模擬程式之建立

The improvement of cathode and simulation of battery performance for a zinc air battery

指導教授 : 林秋豐

摘要


本研究論文主要針對鋅空氣燃料電池之空氣陰極端,進行鋅空氣燃料電池之空氣陰極性能改善的分析與探討,並分為兩個部份,第一部份、為利用具高觸媒催化效果之奈米銀觸媒材料,搭配三種不同的空氣陰極製程設計,分別為不同比例添加方式、不同比例塗佈固定燒結溫度以及固定比例塗佈不同燒結溫度,並以實驗方式進行電池性能測試,來探討不同奈米銀材料製程對電池性能的影響,與本實驗室第一代電池功率密度比較結果顯示提升了45.22%;第二部份,將針對流入空氣陰極端之不同空氣流量與電池性能之關係,從電池實驗到電腦模擬進行一系列不同空氣流量下電池性能表現之研究分析,藉由COMSOL多重物理耦合軟體建立一鋅空氣燃料電池性能模擬程式,透過實驗結果與模擬結果的比對,驗證此鋅空氣燃料電池性能模擬程式可靠性,其顯示在流量為20LPM下,最大誤差值為1.24安培。

並列摘要


The purpose of this study is to improve the performance of zinc-air fuel cell cathode. This thesis is divided into two parts and has two main objectives. In the first part, it investigates the feasibility of three cathode manufacturing processes which are using a novel catalyst material of silver nanoparticles on the cathode with different doping proportions, coating areas and sintering temperatures. Therefore, the influences of the different cathode manufacturing parameters on the cell performance were investigated and analyzed through experimental technique of measuring cell performance. The cell experiment results of the silver catalyst cathode were compared with the previous cathode experiment results and showed promote the 45.22% of power density on the cell performance. The second part focuses on modeling and measurements of the cell performance with different air flows of cathode. The cell performance of an zinc air fuel cell module was studied using computational fluid dynamics (CFD) technique to predict the cell performance curves of using the commercial software COMSOL multi-physics coupling codes. The CFD simulation results were compared with our experimental results and showed acceptable agreements, which shows the cell current of error value have reliable controlled. The maximum error value of cell current is 1.24 amps under the situation of 20LPM air flow.

參考文獻


2. 吳曜佐,2011,鋅空氣燃料電池研究與開發,碩士論文,國立屏東科技大學,車輛工程研究所,屏東。
7. Hui, M. and Pei, K. S., 2006, “Novel Pt-free catalyst for oxygen electroreduction,” Electrochemistry Communications, Vol. 8, No. 4, pp. 588-594.
8. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar and M. Srinivasan, 2010, “Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries,” Journal of Power Sources, Vol. 195, No. 13, pp. 4350-4355.
9. Weiqian, Y., Shaohua, Y., Wei, S., Gongquan, S. and Qin, X., 2006, “Nanostructured silver catalyzed nickel foam cathode for an aluminum–hydrogen peroxide fuel cell,” Journal of Power Sources, Vol. 160, No. 2, pp. 1420-1424.
10. Weiqian, Y., Shaohua, Y., Wei, S., Gongquan, S. and Qin, X., 2006, “Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells,” Electrochimica Acta, Vol. 52, No. 1, pp. 9-14.

被引用紀錄


楊舒為(2010)。會計基本資訊與股價關聯性之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.10531
黃逸嫺(2009)。實質選擇權應用於股價與盈餘關係之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.00804
魏婉婷(2017)。券商盈餘預測修正行為之研究-以臺灣五十指數成分股為例〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1606201711522900

延伸閱讀