透過您的圖書館登入
IP:18.118.140.108
  • 學位論文

電動車鋰離子電池組散熱研究

Cooling of Lithium-Ion Battery Pack in Electric Vehicle

指導教授 : 梁智創

摘要


本論文將本系自行研發之電動車的動力系統以鋰離子電池取代傳統的鉛蓄電池。由於鋰離子電池在充放電過程中會產生大量的熱量造成電池性能不穩定以及大幅縮短電池的使用壽命,嚴重時甚至會影響到電池的使用安全,因此電池的有效散熱及溫度控制是保證電池性能的關鍵。 首先,本論文根據上述電動車之電池管理系統與車體結構,設計兩款(20×9電池組、15×12電池組)適合此車的電池組,並將鋰離子電池的熱產生率並代入ANSYS Fluent中進行模擬。之後將兩款電池組模型加以簡化,估算與能實際模型產生相似發熱的熱產生率後,置入車體結構中進行模擬電動車行駛時之狀態,最後運用強制對流改善電動車行駛時造成的電池散熱,以達成提高電池使用效能與安全性的目的。 在本論文所探討的強制對流方案中,搭配到15×12電池組之組合最能夠讓車輛中所有的電池組達到有效的降溫,並使電池組的平均溫度控制在40oC,得到電池性能的提升與增加使用安全性之目的。

關鍵字

電動車 鋰離子電池 散熱

並列摘要


Lithium-ion battery charge and discharge process will produce a lot of heat causing the battery performance of instability and significantly shorten the battery life, even when serious affect the safe use of the battery, so the effective cooling and temperature control is to ensure that the battery cell performance key. According to the this dissertation of the reference electric vehicle battery management system and body structure design of two types battery pack(20×9 battery pack ,15×12 battery pack)for the car battery, and the rate of heat generation lithium-ion batteries and substituting ANSYS Fluent in simulation. Then, both the battery pack will be simplified model to estimate the actual model and can produce similar heat heat generation rate. After the two simplified models into the vehicle inside structure in the state when the analog electric car driving , and finally improve the use of forced convection caused by electric cars traveling battery cooling, in order to achieve the purpose of improving battery performance and safety. This dissertation explored forced convection plan,15×12 battery pack in combination can make the most of all the vehicle battery packs to achieve effective cooling, be enhanced battery performance and increased use of security target .

並列關鍵字

Electric vehicles lithium-ion battery heat

參考文獻


18. 宋秉儒,2011,「模擬電動車鋰離子電池模組佈置的熱流特性」,碩士論文,國立中央大學,機械工程研究所,桃園。
5. J. B. Goodenough, 1980, “Sensitisation of semiconducting electrodes with ruthenium-based dyes,” Faraday Discussions of the Chemical Society, Vol. 70, pp. 285-398.
6. J. R. Selman, 1982, “Detonation tube studies of aluminum particles dispersed in air,” Symposium (International) on Combustion, Vol. 19, pp. 655-663.
9. A. Manthiram, and J. B. Goodenough, 1989, “Lithium insertion into Fe2 (SO4)3 frameworks,” Journal of Power Sources, Vol. 26, pp. 403-408.
10. Kazuo. O, Takamasa. O, Masato. N, Kenichi. F, and Takuto. A, 2006, “Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power Sources, Vol. 158, pp. 535-542.

延伸閱讀