透過您的圖書館登入
IP:54.159.186.146
  • 學位論文

人工濕地淨化水質效率與補注農田灌溉之研究-以麟洛濕地公園為例

Water purification of constructed wetland and application on farm irrigation-An Illustration of Linlou Wetland Park

指導教授 : 李錦育

摘要


人工濕地是一種自然淨化水質生態工程,具有低成本、低操作維護費用的優點,若能以濕地淨化後水質,補注於農業灌溉,將是污水回收再使用的最佳方式。本研究以麟洛濕地公園為例,利用定期的監測水質變化情形,評估濕地對於生活污水的處理效益,並探討應用於補注農田灌溉的可能性,以及濕地與二級污水處理廠的建造及日常維護操作成本比較。 研究結果顯示濕地豐枯水期平均水力負荷為0.1及0.08 m/day,平均水力停留時間為7.81及9.01天。各污染物平均去除率為電導度(EC):12.4%;鹽度:9.3%;濁度:76.9%;懸浮固體(SS):42.5%;溶氧(DO)效果不明顯。以出流機率法及盒鬚圖分析,SS在入流濃度>30 mg/L時,出流濃度皆可維持在<20 mg/L。豐水期間,EC在入流濃度<550 μs/cm時,去除效果可達150~200 μs/cm;濁度在入流濃度>10 NTU時,出流濃度可維持在<10 NTU;DO則減少0.5~1.5 mg/L。枯水期間,EC入流濃度>700μs/cm時,去除效果可達100 μs/cm以上,DO則在入流濃度>6 mg/L時,約增加1~2 mg/L。 在污染物負荷(PLR)與去除速率(REM)方面,濁度及SS的PLR與REM間呈高度正相關;鹽度為中度正相關性;DO為低度正相關;EC為無相關性。在PLR與出流濃度中,EC、DO及SS的PLR與出流濃度間呈中度正相關,鹽度及濁度的PLR與出流濃度間呈低度正相關。 出流水水質應用於補注農田灌溉方面,若能降低pH值,濕地出流水將更能符合農田灌溉用水標準。出流水於豐水期間除pH項外,符合地面水體分類之「丁類」標準及「灌溉用水水質標準」;而枯水期間,水質多能符合地面水體分類之「乙類」標準及「灌溉用水水質標準」 在不考慮土地成本前提下,人工濕地之建設成本為944元/m2,約為傳統二級污水處理廠的70%左右,一年的操作維護成本為47元/ m2,約為二級污水處理廠的93%左右;運作年份25年時,濕地的建造操作成本為二級污水處理廠的1/2。每年所產生的農業用水效益為59.43萬元/ m2,麟洛濕地公園廿年的經濟效益為50,784萬元,廿年操作維謢成本為33,648萬元,益本比為1.18,顯示麟洛人工濕地是一種相當具有投資效益的建設。

並列摘要


Constructed Wetland(CW) is a kind of natural ecological system which can be used to purify wastewater. It has advantages of low cost and low operation cost. It may be the best way to recycle wastewater if we apply the water which is purified by CW to farm irrigation. The purpose of this study is to evaluate the effectiveness of Linlou Wetland Park(LWP) via monitoring changes of water quality and assessing its effectiveness on treatment of wastewater. This study also explored the possibility of using the purified water to farm irrigation and compared the operation and construction costs between wetlands and second effluent plant. Results from this study shown that Hydraulic Loading Rates (HLR) were 0.1 and 0.08 m/day, Hydraulic Retention Time (HRT) were 7.81 and 9.01 day during wet season and dry season. The average removal efficiencies were 12.4% for Electrical Conductivity (EC), 9.3% for salinity, 76.9% for turbidity, and 42.4% for Suspended Solids(SS). Effects on reduction in Dissolved Oxygen(DO)were not obvious. Through the analyses of the Effluent Probability Method (EPM) and box-and-whisker plot, when SS influent concentration >30 mg/L, the outfluent concentration can be maintained at <20 mg/L. During wet season, EC influent concentration <550μs/cm, the removal efficiency of up to 150~200 μs/cm. When turbidity influent concentration >10 NTU, the outfluent concentration can be maintained at <10 NTU. DO reduce 0.5~1.5 mg/L. During dry season, EC influent concentration >700 μs/cm, the removal efficiency of up to 100 μs/cm. DO influent concentration >6 mg/L, the outfluent concentration can add to 1~2 mg/L. Regarding to Pollutant Load (PLR) and removal rate, there was high positive correlation on them for turbidity and SS. There was moderate positive correlation on them for salinity. There was low positive correlation on them for DO. There was no correlation on them for EC. Concerning about PLR and the effluent, there was moderate positive correlation on them for EC,DO and SS. There was low positive correlation on them for salinity and turbidity. For the quality of effluent used to irrigation, the study results indicated that if we lower the pH of the effluent, it would meet the standard for irrigation water. In the wet season, except for the PH, the effluent more met the Class Ⅳ surface water body quality standard and irrigation water standard. In the dry season, the effluent usually more meet the Class Ⅱ surface water body quality standard and irrigation water standard. Without consideration to the costs of land, the construction cost for CW is $944/ m2, which is about 30% off from the construction cost for the secondary effluent plant. The maintenance cost is $47/m2 per year, which is about 7% off from the construction cost for the secondary effluent plant. After 25 years, the maintenance cost for CW is 50% off from that for the secondary effluent plant. The benefits generated by the agricultural irrigation are $594,300/ m2 per year. In addition, after 20 years, the economic benefits of LWP are $507.84 million, the maintenance cost is $33,648 million, and the benefit is 1.18 times. It indicated that LWP is a kind of construction that is worth investing.

參考文獻


29. 陳惠玲(2006)非點源污染控制措施不同方法除污效率之探討。國立台北科技大學環境工程與管理研究所碩士論文,pp.25-36。
38. 張翊峰、荊樹人、林瑩峰、王書斌、李得元 (2005) 台灣地區人工濕地技術關聯資料庫之建立與研究。嘉南學報31:253-263。
42. 歐文生、林憲德、荊樹人(2005)景觀化人工濕地淨化校園污水效益與公共衛生之研究。建築學報56:183-202。
18. 林鎮洋、劉秀鳳、陳彥璋、王建清、陳起鳳(2007)以出流機率法評估濕式滯留池除污效率。中華水土保持學報38(3):205-215。
43. 歐文生(2005)生活污水應用人工濕地處理及再利用之研究。國立成功大學建築研究所博士論文,pp.56-63。

被引用紀錄


陳冠佑(2015)。表面流人工溼地去除污染物之研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846%2fTKU.2015.00585
范曉丹(2011)。麟洛濕地滯洪效率之評估〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346%2fNPUST.2011.00073

延伸閱讀