透過您的圖書館登入
IP:18.223.125.219
  • 學位論文

低溫製備磷酸鈣及氧化鋁生醫複合材料之研究

Low-Temperature Preparation of Calcium Phosphate plus Aluminum oxide Biocomposite

指導教授 : 許澤勳

摘要


本研究主要以磷酸三鈣、氫氧基磷灰石及氧化鋁與氫氧化物製備生醫複合材料,主要原因是磷酸三鈣、氫氧基磷灰石及氧化鋁等生醫材料,具有生物相容性及優良機械性質。其中氫氧基磷灰石具有優良生物相容性,並且與骨骼成份相近,而氧化鋁具有生物惰性。 除了氫氧基磷灰石和磷酸三鈣為主要材料外,在製程反應中,藉由燒結添加劑NaOH及KOH加入在低溫產生燒結反應。其中燒結溫度分別設定350℃和900℃,及450℃和900℃來觀察燒結收縮率及相組成。   傳統的氫氧基磷灰石及磷酸三鈣複合材料均需藉由高溫燒結來完成,其中溫度需要達到T>1000℃以上。而本研究利用氫氧化物燒結添加劑發現:在350℃及450℃燒結情況下,反應燒結後的磷酸鈣加氧化鋁複合材料,尺寸收縮約1~2%左右。至於在900℃燒結的樣品,有些樣品的燒結緻密性可高達90%以上。   至於燒結後複合材相組成,氫氧基磷灰石及氧化鋁複合材料是以氫氧基磷灰石(HA)加α-Al2O3的樣品結構,至於磷酸三鈣及氧化鋁的複合材料是以β-Ca3(PO4)2及α-Al2O3晶體結構為主,至於是否產生α-Ca3(PO4)2晶體結構將進一步討論。燒結後樣品的微觀組織,其中磷酸三鈣,氫氧基磷灰石及氧化鋁的精力並沒有明顯成長的現象。至於樣品製備、燒結機構及相關的物理特性相關性將詳細討論。

並列摘要


Tri-calcium phosphate(Ca3(PO4)2), hydroxyapatite(Ca10(PO4)6(OH)2), aluminum oxide(Al2O3), and hydroxide are used to prepare biocomposites in this study. This is because tri-calcium phosphate , hydroxyapatite, and aluminum oxide are bio-compatible with excellent mechanical properties. Among them, Ca10(PO4)6(OH)2 is similar to the composition of natural bone, and Al2O3 is bioisert. Except for these three materials, NaOH and KOH are added to react-sinter with them at low temperatures, which are 350℃ and 900℃, or 450℃ and 900℃, to observe dimension shrinkage and phase existence after sintering. In tradition, Ca10(PO4)6(OH)2 (HA) or Ca3(PO4)2 composites are mostly sintered at high temperatures, which are T>1000℃. In this study , under a sintering condition at 350℃ or 450℃, most of sintered Ca3(PO4)2 + Al2O3 , or Ca10(PO4)6(OH)2 + Al2O3 specimens show their linear shrinkage with 1~2%. When specimens being sintered at 900℃, some specimens show their densification rate up to 90%. As to phase existence of sintered specimens : HA+ Al2O3 composites contain. HA and α-Al2O3 crystal structures. Ca3(PO4)2 + Al2O3 composites contain β-Ca3(PO4)2 and α-Al2O3 crystal structures. whether α-Ca3(PO4)2 exists in these sintered specimens will be further discussed. As to microstructures, Ca3(PO4)2, Al2O3, and HA do not show any significant grain growth. As to the correlations among sample preparations, sintering mechanisms, and physical properties, are discussed in detail.

參考文獻


[45] 鍾仁傑,以溶膠凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究,清華大學材料科學與工程研究所碩士論文,2000年, 第九頁。
[1] L. L. Hench, “bioceramics: from concept to clinic”, J. Am. Ceram. Soc., vol.74, no.7, 1991, pp.1487-1510.
[2] A. J. Garcia, P. Ducheyne, and D. Bottiger, “Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass”, J. Biomed. Mater. Res., vol.40, no.2, 1998, pp.48-56.
[4] W. R. Walsh and D. L. Christiansen, “Demineralized bone matrix as a template for mineral-organic composites”, Biomaterials, vol.16, no.18, 1995, pp.1363-1371.
[5] Y. Cui, Yi Liu, Yi Cui, X. Jing, P. Zhang, and X. Chen, “The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair”, Acta Biomater., vol.5, no.7, 2009, pp.2680-2692.

延伸閱讀