透過您的圖書館登入
IP:3.22.51.241
  • 學位論文

農業有機廢棄物生物炭添加厭氧消化之產氣影響

The Effect of Biochar Addition on the Anaerobic Digestion of Agricultural Organic Waste

指導教授 : 羅煌木
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


臺灣每年處理大量的農業有機廢棄物與都市固體廢棄物,而近期生物炭(Biochar)與厭氧消化(Anaerobic Digestion, AD)的議題備受關注。這兩項的相關研究都可用在生活應用與環境整治上,而生物特性(固碳作用、吸附作用與調節 pH 等) 在各領域上都有應用,如作為廢棄物處理、農業改良、廢水處理及生物處理等。厭氧消化應用除了可以幫助消耗大量固體有機廢棄,並利用其機制取得沼氣與沼渣,再將沼渣、沼氣作為能源發電及農業肥料。本研究是結合兩項相關技術,善用厭氧消化與生物炭特性,將生物炭的微孔結構和碳質穩定性等來提高消化槽的生物量密度和細菌代 謝活性,探討沼氣產量之研究。研究可分為三大主軸,分別是探討不同種類生物質製備生物碳,如菱角殼生物炭(Water chestnut shell Biochar, WB)、茶葉渣生物炭(Tea residue Biochar, TB)、甘蔗皮生物炭(Sugarcane Biochar, SB),不同劑量(0、0.7、1.4、2.8g)與不同溫度(250℃、450℃、750℃)對其進行特性分析與厭氧消化產氣影響,比較其差異性。實驗週期為 28天內,並在工作體積 500 mL 內操作試驗,觀測產氣的變化,並每三日分析其基本參數。 研究結果顯示,添加稻殼基質(Rice husk, RH)與未添加稻殼基質反應下,可以看出厭氧消化因稻殼基質使微生物在消化過程促進沼氣產率,約 2-5 倍。本實驗是添加菱角殼生物炭作為主軸,將生物 炭劑量的影響作為總結其累加產氣量介於 17.47-50 mL/g VS(添加稻殼基質)、18.93-76.19 mL/g VS(未添加稻殼基質)。以不同種類生物炭(WB、SB、TB)比較其產氣量依序為 24.22 mL/g VS、84.58 mL/gVS、85.75 mL/g VS,看出微生物以生物炭的微孔結構及粒徑大小來影響水解速率、抑制揮發酸與甲烷產率。 關鍵字:生物炭、厭氧消化、熱裂解

關鍵字

生物炭 厭氧消化 熱裂解

並列摘要


Taiwan treats a large amount of agricultural organic waste and municipal solid waste every year, and the recent issue of biochar (Anacharbic and Anaerobic Digestion, AD) has received great attention. Both of these related studies can be used for life applications and environmental remediation, and their biological characteristics (carbon fixation, adsorption, pH adjustment, etc.) are also used in various fields such as waste treatment, agricultural improvement, and wastewater treatment. You can use the application in the following locations. Biological treatment, etc. In addition to the application of Anaerobic Digestion, it consumes a large amount of solid organic waste, and its mechanism is used to obtain biogas and biogas residue, and biogas residue and biogas are used for energy generation and agricultural fertilizer. Can be used for This study is a combination of two related technologies that take advantage of the properties of anaerobic digestion and biochar to improve biomass density and bacterial metabolic activity in digestion tanks and to study biogas production. Research main three main axes, investigation of different kinds of biomaterials made of biomaterials such as Water chestnut shell Biochar, WB, Tea residue Biochar, TB, Sugarcane Biochar, SB. Effect of different amounts (0, 0.7, 1.4, 2.8g) and degree of dissimilarity (250℃, 450℃, 750℃) on biochar progress characteristics analysis. We will test the operation of 500 mL of product volume and observe the changes in gas production and analyze its basic parameters every three days. The results of the study show that the reaction. It can be seen that due to the anaerobic digestion, the rice husk matrix allows microorganisms to promote biogas yield during the digestion process, about 2-5 times. In this experiment, we add water chestnut shell biochar as a main axis. To summarize the effects of biochar dose, the cumulative gas production is between 17.47-50 mL/g VS (with added rice husk matrix) and 18.93-76.19 mL/g VS (without added rice husk matrix). Comparing different types of biochar (WB, SB, TB), the gas production is 24.22 mL/g VS, 84.58 mL/g VS, 85.75 mL/g VS. It can be seen that the micropore structure and particle size of the microorganism influence the hydrolysis rate and are used by the microorganism to suppress the production of volatile acids and methane. Keyword: Biochar, Anaerobic digestion, Thermal cracking

並列關鍵字

Biochar Anaerobic digestion Thermal cracking

參考文獻


Aamer, Muhammad., Shaaban, Muhammad., Hassan, Muhammad Umair., Guoqin, Huang., Ying, Liu., Hai Ying, Tang., Rasul, Fahd., Qiaoying, Ma., Zhuanling, Li., Rasheed, Adnan., and Peng, Zhang. “Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH,” Journal of Environmental Management, Vol. 255, pp. 109891(2020).
Abdel-Fattah, Tarek M.., Mahmoud, Mohamed E.., Ahmed, Somia B.., Huff, Matthew D.., Lee, James W.., and Kumar, Sandeep. “Biochar from woody biomass for removing metal contaminants and carbon sequestration,” Journal of Industrial and Engineering Chemistry, Vol. 22, pp. 103-09(2015).
Antwi, Edward., Engler, Nils., Nelles, Michael., and Schüch, Andrea. “Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues,” Waste Management, Vol. 88, pp. 131-40(2019).
Atelge, M. R.., Atabani, A. E.., Banu, J. Rajesh., Krisa, David., Kaya, M.., Eskicioglu, Cigdem., Kumar, Gopalakrishnan., Lee, Changsoo., Yildiz, Y. Ş., Unalan, S.., Mohanasundaram, R.., and Duman, F., “A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery,” Fuel, Vol. 270, pp. 117494(2020).
Bi, Shaojie., Hong, Xiujie., Yang, Hongzhi., Yu, Xinhui., Fang, Shumei., Bai, Yan., Liu, Jinli., Gao, Yamei., Yan, Lei., Wang, Weidong., and Wang, Yanjie. “Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste,” Renewable Energy, Vol. 150, pp. 213-20(2020).

延伸閱讀