透過您的圖書館登入
IP:18.222.226.15
  • 學位論文

大氣細懸浮微粒金屬成份特徵及來源貢獻分析研究

Charaterisics of Metal Compositions and Source Contributions of Atmospheric Fine Particulate

指導教授 : 楊錫賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究於2011年7月至2012年6月解析北部地區不同季節大氣及特定對象細懸浮微粒 (PM2.5) 質量濃度。將採集之樣品進行金屬元素分析,並應用加強因子法分析微粒組成與污染源的相關性,之後使用主成份分析對PM2.5污染源作定性分析,瞭解懸浮微粒之可能污染源,最後以化學質量平衡法作定量分析,推估各地區對受體點污染源貢獻量。 本研究於2011年至2012年期間監測北部地區季節性大氣PM2.5及特定區域質量濃度。研究結果顯示,四縣市同步採樣於冬、春季期間測得之懸浮微粒質量濃度高於夏季與秋季期間;污染物傳遞採樣若受到上下風傳遞關係,則導致導致PM2.5濃度有遞增情形產生;工業區採樣平日測得之PM2.5濃度平均值大多高於假日;柴油車較多之臺北港及轉運站採樣結果顯示,日間PM2.5濃度高出夜間1.24 ~ 1.69倍;公車專用道採樣中,假日PM2.5濃度最高時段為上午,而中午次高,PM2.5濃度最低為下午,平日則與假日相反,下午測得PM2.5濃度最高,其次為中午,上午則為最低,其測值上午、中午與下午三個時段互有高低,並無一定趨勢;由交通密集道路PM2.5採樣結果得知,平日上午、中午及下午為假日之2.83、1.92及1.40倍,顯示民眾於平日暴露PM2.5濃度較假日高。此外,本研究在化學組成方面,大氣微粒中之金屬元素以Al、Ca、Fe、K、Mg與Na所含濃度最高為主要金屬元素;工業區金屬以Cu、Mn、Pb及Zn元素較一般大氣高;柴油車密集區測得之金屬元素以Al、Ca、Cr、Cu、Fe及Ni較大氣高出許多;隧道/地下道、地下停車場中,較一般大氣含量高之金屬元素為Cr、Cu、Fe、Mn及Zn。在應用加強因子分析法分析結果顯示,金屬元素Cu、K、Na、Ni、Pb來自非土壤之其他來源;應用主成份分析法進行大氣四縣市同步採樣的分析,結果共分為四個因子,因子1至因子4分別定義為混合污染源、海水飛沫、重油燃燒貢獻及地殼來源;應用化學質量平衡法模式解析北部地區季節性PM2.5貢獻污染源,綜觀北部地區季節性PM2.5貢獻污染源以硫酸鹽貢獻量最大,其次為機動車輛,而後為烹飪。

並列摘要


In this study, the atmospheric fine particulate (PM2.5) in different seasons were collected from July, 2011 to June, 2012 in Northern Taiwan. The metal elements were also analyzed. Enrichment (EF), Principal Component Analysis (PCA) and Chemical Mass Balance (CMB) were applied to estimate the contribution of emission sources for the receptor sites. The results show that the PM2.5 mass concentration in winter and spring are higher than summer and autumn. PM2.5 concentrations are higher for the samplers at the right downwind than the upwind sitesof the industrial plants. PM2.5 concentrations measured on weekdays at industrial areas are mostly higher than those on holidays. The Port of Taipei and bus station have more diesel cars. PM2.5 concentration at the two sites in daytime is 1.24 ~ 1.69 times higher than in nighttime. For bus-only lane sampling, the PM2.5 concentration is highest in the morning for holidays, PM2.5 concentration is lowest in the afternoon. For weekdays, PM2.5 concentration is highest in the afternoon and lowest in the morning. PM2.5 concentrations for heavy traffic road at morning, noon and afternoon time in weekdays are 2.83, 1.92 and 1.40 times higher than holidays, it indicates that people might be exposed to higher PM2.5 concentration in weekdays than inholidays. The compositions of Al, Ca, Fe, K, Mg and Na are high in the atmospheric PM2.5, as the metals Cu, Mn, Pb and Zn are higher at the industrial sites. Al, Ca, Cr, Cu, Fe and Ni are much higher at the sites with more diesel vehicles. For the sties of tunnel/underground and underground parking lot, the metals Cr, Cu, Fe, Mn and Zn are siginificantly higher. The result of Enrichment Factor analysis reveals that the metal compositions Cu, K, Na, Ni and Pb are from non-soil sources. Principal Component Analysis results show that there are four factors. Factor 1 to factor 4 are defined as mixed pollution source, sea-salt, heavy oil burning contribution and crustal source, respectively. Chemical Mass Balance results show that secondary sulfate is the major contribution source, followed by motor vehicle and cooking.

參考文獻


Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., McMullen, M.A.S., Khandelwal, P., “Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK,” Science of the Total Environment, Vol. 279, pp. 29-44 (2005).
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., “Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution,” Science of the Total Environment, Vol. 368, pp. 663-674 (2006).
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., “Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European coast,” Atmospheric Environment, Vol. 39, pp. 3127-3138 (2005).
Artinano, B., Salvador, P., Alonso, D.G., Querol, X., Alastuey, A., “Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain),” Science of the Total Environment, Vol. 334-335, pp. 111-123 (2004).
Burnett, R.T., Smith-Doiron, M., Stieb, D., Cakmak, S., Brook, J.R., “Effects of aprticulate and gaseous air pollution on cardiorespiratory hospitalizations,” Archives of Environmental and Occupational Health, Vol. 54, pp. 130-139 (1999).

被引用紀錄


邱千綺(2015)。大氣細懸浮微粒與鉛濃度分析不確定度評估〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2502201617124206

延伸閱讀