透過您的圖書館登入
IP:18.223.125.219
  • 期刊
  • OpenAccess

甘豆亞科孿葉豆屬化石樹脂之萜類化合物與紅外光譜特性

Terpenoid Composition and Infrared Spectroscopy of Detarioideae Hymenaea Origin of Fossil Resin

摘要


化石樹脂為古代植物分泌之樹脂,經地層深埋、歷經溫度、壓力和化學轉化作用所形成之有機天然寶石,根據埋藏年代又分為年代少於500萬年之柯巴以及年代大於1000萬年之琥珀。在研究中常使用萜類化合物分析內含成分及植物來源,亦可使用萜類化合物探討受熱成熟裂解之歷程。本實驗利用熱裂解氣相層析質譜儀(Pyrolysis gas chromatography - mass spectrometry, PY-GC-MS)探討馬達加斯加化石樹脂及多明尼加化石樹脂之萜類化合物歷經不同溫度之熱裂解成份變化,並以傅立葉紅外光衰減全反射光譜儀(Fourier-transform infrared spectroscopy - Attenuated Total Reflectance, FTIR-ATR)探討不同年代甘豆亞科孿葉豆屬(Hymenaea)之官能基差異。初步結果顯示,馬達加斯加化石樹脂之Enantio biformene化合物不易因溫度上升而裂解,多明尼加化石樹脂Enantio biformene則呈現因溫度上升訊號有明顯下降之趨勢。馬達加斯加化石樹脂紅外光譜分析結果顯示波數880cm^(-1)~870cm^(-1)具芳香烴CH_2彎曲震動,而多明尼加化石樹脂則較無此訊號,由於芳香烴CH_2彎曲震動吸收訊號較弱,因此推論馬達加斯加化石樹脂受熱成熟歷程時間較短。深埋歷程較久遠之多明尼加甘豆亞科孿葉豆屬化石樹脂Factor(C=CH)相對較低,深埋歷程時間較短之馬達加斯加化石樹脂則有較高值。本研究發現可利用紅外光譜中波數880cm^(-1)~870cm^(-1)訊號強弱輔助判斷植物親緣關係相近的化石樹脂之不同年代分析。

並列摘要


Fossil resin is fossilised plant resin. The originally liquid resin solidifies through polymerisation, high temperature, pressure acting and on deposition undergoes maturation to become Fossil resin. It was generally considered that a 10 million-year old resin is to be called amber, under 5 million years old should be named copal. The classification of fossil resin or copal is based on the ensemble of chemical compounds it contains. The terpenoids and aromatic compounds from fossil resins in Madacarscar and Dominican were measured by means of technologies of Pyrolysis gas chromatography - mass spectrometry (PY-GC-MS) and Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR), along with discussion of organic matter constituents, Functional group and maturity of the fossil resins. Study results show that the Enantio biformene of fossil resin from Madacarscar was difficult to pyrolysis while the temperature increase but Dominican sample was pyrolysis obviously. It is possible to differentiate between fossil resins and copal by observing the exocyclic methylene bands at 3048, 1642 and 887cm^(-1). In the case of copal, the first two bands are not intense, but the band of 887cm^(-1) is very intense. In fossil resins, the bands are absent or of very weak intensity. Fossil resin or copal can be differentiated using FTIR spectroscopy by observing exocyclic methylene bands.

參考文獻


陳彥宇與張英如,2020。傅立葉紅外光衰減全反射光譜在有機官能基團的分析,國立臺灣博物館學刊,73(1): 1–16。
Ali, J. R. and Huber, M. 2010. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature, 463(7281): 653–656.
Anderson, K. B. Winans, R. E. and Botto, R. E. 1992. The nature and fate of natural resins in the geosphere—II. Identification, classification and nomenclature of resinites. Organic Geochemistry, 18(6): 829–841.
Anderson, K. B. 1996. The nature and fate of natural resins in the geosphere—VII. A radiocarbon (14C) age scale for description of immature natural resins: an invitation to scientific debate. Organic geochemistry, 25(3-4): 251–253.
Clifford, D. J. and Hatcher, P. G. 1995. Structural transformations of polylabdanoid resinites during maturation. Organic Geochemistry, 23(5): 407–418.

延伸閱讀