透過您的圖書館登入
IP:3.145.151.141
  • 期刊

Kinematic Trait and Difference of High-Speed Sprinting Between Taiwan Male Elite Adult and Teenage Sprinters

臺灣男性高水平成年與青少年短跑選手高速期運動學特徵與差異

摘要


Purpose: This study aimed to investigate the trait and difference between the kinematics of maximum speed running of Taiwan male elite and teenage sprinters to provide teenage sprinters training guidance. Methods: Thirty two male teenage sprinters (mean age: 14 ± 1; personal best: 11.63 ± 0.03sec) and 8 elite sprinters (mean age: 24 ± 1; personal best: 10.46 ± 0.11sec) were recruited in the study. Subjects sprinted 80 m for 3 times, the sagittal plane of running motion between 50 m to 60 m was recorded with two JVC high-speed cameras. Kinovea 2D motion analyzing software was used to collect and analyze the running motion parameters. The independent t-test was used to compare the differences between the teenage and elite sprinters. The effect size for the two group differences was also calculated. Moreover, a full-model multiple discriminant analysis was applied to determine the true difference of grouping for all variables to calculate the equality of elite and teenage group means. Results: In t-test, Elite adult and teenage sprinters' mean speed (10.510 m/s; 7.882 m/s), stride length (2.070 m; 1.781 m), frequency (5.110 steps/s; 4.423 steps/s), contact time (0.082 sec; 0.110 sec), upper leg recovery rotational speed (497.000 deg/s; 433.100 deg/s), upper leg touchdown rotational speed (483.000 deg/s; 394.300 deg/s), lower leg touchdown rotational speed (346.000 deg/s; 265.100 deg/s), vertical foot speed at touchdown (3.280 m/ s; 2.371 m/s), horizontal foot distance to center of mass (COM) at touchdown (22.060 cm; 38.059 cm), knee full flexion angle at recovery (28.000 deg; 33.500 deg) were significantly different (p < .05). The effect size (Cohen's d) value for each variable was 3.118, 2.302, 1.949, 3.997, 1.305, 1.190, 2.215, 3.607, 0.999, respectively. The discriminant analysis shows mean speed, stride length, frequency, contact time, upper leg recovery rotational speed, upper leg touchdown rotational speed, lower leg touchdown rotational speed, vertical foot speed at touchdown, horizontal foot distance to COM at touchdown have discriminating capability (p < .05). Elite sprinters showed faster speed, longer stride, quicker frequency, and shorter ground time, higher upper leg recovery rotational speed, upper leg touchdown rotational speed, lower leg touchdown rotational speed, shorter horizontal foot distance to COM at touchdown, lower knee full flexion angle at recovery. Conclusion: To technique regarding active ground preparation, reduce of ground contact time and efficient recovery of swing leg, training such as sprinting motor pattern drill, lower extremity strength, and power training are suggested to be added to Taiwanese teenage sprinting training in in order to achieve better performance level.

並列摘要


目的:本研究意在探討臺灣男性高水平成年與青少年短跑選手高速期運動學特徵與差異,並提供青少年短跑選手訓練方針。方法:招募臺灣男性32名青少年(個人最佳:11.63 ± 0.03 秒)以及8名高水平成年短跑選手受試者(個人最佳:10.46 ± 0.11 秒),進行共3次80公尺衝刺,每趟衝刺以2架JVC高速攝影機拍攝受試者50公尺至60公尺之間高速跑動作,並以2D分析軟體kinovea分析選手高速跑運動學指標,以獨立樣本t檢定分析兩組差異並計算其效果量,另外再以判別分析確定所有變量的分組的差異,以計算高水平組和青少年組均值的相等性。結果:在t檢定中,高水平成年與青少年選手短跑選手之平均速度(10.510公尺/秒;7.882公尺/秒)、步幅(2.070公尺;1.781公尺)、步頻(5.110步/秒;4.423步/秒)、觸地時間(0.082秒;0.110秒)、大腿回收角速度(497.000 deg/秒;433.100 deg/秒)、大腿落地角速度(483.000 deg/秒;394.300 deg/秒)、腳落地垂直速度(3.280公尺/秒;2.371公尺/秒)、觸地腳與身體重心水平距離(22.060公分;38.059公分)、回收腿最大摺疊角度(28.000度;33.500度)成顯著差異(p < .05),各指標的效果量分別為3.118, 2.302, 1.949, 3.997, 1.305, 1.190, 2.215, 3.607, 0.999。判別分析顯示上述指標具有判別能力(p<.05)。結論:青少年選手應注重積極著地技術、減少觸地時間、有效的回收腿效率,針對短距離跑的動作模式基本動作、下肢的力量、爆發力的訓練需在青少年短跑選手的訓練中更加著重以達到更好運動表現。

並列關鍵字

速度 步幅 步頻 觸地時間 騰空時間

參考文獻


Adnan, N. M. N., Ab Patar, M. N. A., Lee, H., Yamamoto, S.-I., Jong-Young, L., & Mahmud, J. (2018). Biomechanical analysis using Kinovea for sports application. IOP Conference Series: Materials Science and Engineering, 342, 012097. https://doi.org/10.1088/1757-899X/342/1/012097。
Debaere, S., Jonkers, I., & Delecluse, C. (2013). The contribution of step characteristics to sprint running performance in high-level male and female athletes. The Journal of Strength & Conditioning Research, 27(1), 116-124. https://doi.org/10.1519/JSC.0b013e31825183ef。
Haugen, T., Danielsen, J., Alnes, L. O., McGhie, D., Sandbakk, Ø., & Ettema, G. (2018). On the importance of “front-side mechanics” in athletics sprinting. International Journal of Sports Physiology and Performance, 13(4), 420-427. https://doi.org/10.1123/ijspp.2016-0812。
Haugen, T., Seiler, S., Sandbakk, Ø., & Tønnessen, E. (2019). The training and development of elite sprint performance: An integration of scientific and best practice literature. Sports Medicine–Open, 5(1), 1-16. https://doi.org/10.1186/s40798-019-0221-0。
Ho, W. H., Shiang, T.-Y., Lee, C. C., & Cheng, S. Y. (2013). Body segment parameters of young Chinese men determined with magnetic resonance imaging. Medicine & Science in Sports & Exercise, 45(9), 1759-1766. https://doi.org/10.1249/MSS.0b013e3182923b2a。

延伸閱讀