透過您的圖書館登入
IP:3.144.104.29
  • 期刊

以光譜法直接觀察平版奈米銀加入人血清白蛋白隨時間的演化:截角、聚集以及蛋白質冠冕的生成

Direct Spectroscopic Observation on Time Evolution of Silver Nanoplates in the Presence of DTT-treated Human Serum Albumin (HSA): Sculpturing, Aggregation and Protein Corona Formation

摘要


這個研究旨在利用時間解析的UV-vis光譜探討平版奈米銀膠體與蛋白質的交互作用。首先,我們可以利用三階段光化學法合成具有非常窄銳以及對稱的侷限表面電漿子共振(LSPR)波峰的平版奈米銀膠體溶液。不同濃度的天然人血清白蛋白或者以二硫蘇醇(DTT)還原過的人血清白蛋白加入平版奈米銀膠體溶液,都可以觀察到其LSPR波峰位置隨著時間逐漸位移。當平版奈米銀膠體溶液的LSPR波峰位置加入4-5 μM的天然人血清白蛋白,其波峰位置僅僅由670 nm紅位移至681 nm。然而,加入濃度範圍為3.0-4.0 μM的DTT還原人血清白蛋白,平版奈米銀膠體溶液的LSPR波峰位置可以大幅度紅位移30至55 nm。不管位移的量為何,這些紅位移對應到蛋白質冠冕逐漸的生成,由動力學分析,其生成時間大約為10-300 s之間。同時我們也觀察到,當所加入的DTT還原人血清白蛋白的濃度低於2.0 μM時,平版奈米銀膠體溶液的LSPR譜帶會產生藍位移,此藍位移應該對應到緩衝溶液中氯離子對未受蛋白質完全保護的平版奈米銀的截角作用。進一步,當DTT還原人血清白蛋白的濃度為2.5 μM時,在加入後300秒左右會在較長波長的位置(742 nm)出現第二個LSPR譜帶。此雙峰分佈應該對應到DTT還原人血清白蛋白吸附於奈米銀後所誘導的聚集作用。以我們目前所知道的,很少奈米材料像平版奈米銀一樣可以在這麼短的時間內具有這麼多元的演化命運(截角、聚集以及蛋白質冠冕生成等)。我們相信這個研究可以為以簡單光譜方法深入探討電漿子奈米粒子與生物分子相互作用的研究鋪路。

並列摘要


This study investigates the interaction between proteins and silver nanoplate (AgNPt) colloids using time-resulted UV-vis spectroscopy. The AgNPt colloids with a very narrow and symmetry localized surface plasmon resonance (LSPR) band can be synthesized using the three-stage photochemical method. When native HSA and DTT-treated-HSA with different concentrations were added to AgNPt colloids, LSPR bands gradually shifted. LSPR bands of AgNPt colloids only redshift from 670 to 681 nm in the presence of native HSA with the concentration range from 4-5 μM. However, LSPR bands of AgNPt remarkably redshift by 30 to 55 nm in the presence of DTT-treated HSA with the concentration range of 3.0-4.0 μM. From the kinetic analysis, these redshifts were correlated to the protein corona's gradual formation (0-600 s). We also found that LSPR bands of AgNPt colloids blue shift in the presence of DTT-HSA with a concentration lower than 2.0 μM. The blueshift corresponds to the sculpturing effect of chloride ions (buffer solution) on the silver nanoplates without the complete protection of protein corona. In addition, in the presence of DTT-HSA with a concentration of 2.5 μM, the second AgNPt LSPR band emerged in the longer wavelength (742 nm) after 300 s. This bimodal spectroscopic feature indicates the adsorption-induced aggregation of DTT-HSA-AgNPt. To the best of our knowledge, few nanomaterials like silver nanoplates can have such multiple evolutionary fates (i.e., sculpturing, aggregation, and protein corona formation) in such a short period. We believe this study can pave the way to understand deeply the interaction of biomolecules with plasmonic nanoparticles using a simple spectroscopic method.

延伸閱讀