透過您的圖書館登入
IP:18.227.24.209
  • 學位論文

磷化銦鎵/砷化鎵量子井異質接面雙載子電晶體之溫度感測器應用

InGaP/GaAs Quantum Well Heterojunction Bipolar Transistor for Thermal Sensor Application

指導教授 : 吳肇欣

摘要


本文的主旨是利用量子井中的電子受熱激發特性來感測環境溫度,以用於溫度感測器的應用。 在第一章中,給出了溫度感測器的介紹和背景。有多種方法可以實現溫度感測器,例如基於BJT 的DTMOS 和CMOS 的電路架構。本文提出了一種採用量子井異質接面雙載子電晶體元件來實現溫度感測器的應用。 在第二章中,我們將介紹為什麼將量子井異質接面雙載子電晶體用於溫度感測器。我們會討論三種電晶體,包括雙極性接面電晶體、異質雙載子電晶體和量子井異質接面雙載子電晶體的電流增益,我們會介紹其物理原理,推導其中電流增益的公式,並介紹三種不同磊晶的晶圓。 在第三章中,我們將介紹如何在無塵室中完成元件和電路的製程,並解釋製程步驟。此外,異質雙載子電晶體的直流測量結果和量子井異質接面雙載子電晶體中不同數量的量子井在不同溫度下的特性。並整理出對於不同尺寸,不同晶圓和不同溫度的比較表,用於展示元件的電流增益。 在第四章中,我們提出四個關於溫度感測器的電路。在模擬中,我們可以看到與單顆元件相比,電路的電流增益的提升。並且電路在25℃和85℃下,有著電流增益的提升。可以測過模擬與量測觀察到量子井異質接面雙載子電晶體的輻射複合特性。通過將我們的量子井異質接面雙載子電晶體元件和電路與類比數位轉換器相結合,完成一個溫度感測器的系統。

並列摘要


The main idea of this thesis is using the thermionic emission characteristics of quantum wells (QW) to sense ambient temperature for thermal sensor applications. The first chapter gives an introduction and background of thermal sensors. There are several commonly used designs using as bipolar junction transistors (BJT), DTMOS or CMOS for thermal sensors. In this thesis, I propose a thermal sensor device using quantum well heterojunction bipolar transistors (QWHBT). In the second chapter, I will introduce why I use QWHBTs for the thermal sensor device. The current gain β is calculated and compared for BJT, HBT and QWHBT devices. The operating principles will be discussed, and I will introduce three wafers, one with standard HBTs, one with one-QW QWHBTs and one with three-QW QWHBTs and demonstrate their characteristics in the following chapter. In the third chapter, I will explain the fabrication process of the devices. The DC measurement results of an HBT and different number of QW in QWHBT are shown as the temperature rise. There is a comparison table for the current gain of each device in different sizes, different wafers and at different temperatures. In the fourth chapter, I compare four different circuits for the thermal sensor application. In the simulation results, I demonstrate the current gain enhancement of the circuits compared to single devices. The radiative recombination characteristics in QWHBT devices are compared at 25℃ and 85℃. By combining our QWHBT components and circuits with analog-to-digital converters (ADC), a temperature sensor system is completed.

參考文獻


[1] A. Bakker, “CMOS smart temperature sensors - an overview,” Proc. IEEE Sensors, vol. 2, pp. 1423 – 1427, Oct. 2002.
[2] K.A.A. Makinwa, “Smart temperature sensors in standard CMOS,” Proc. Eurosensors, vol. 5, pp. 930-939, Sep. 2010.
[3] K. Souri, Y. Chae, Y. Ponomarev, K. A. A. Makinwa, “A precision DTMOST-based temperature sensor,” Proc. ESSCIRC, Sept. 2011.
[4] W. Shockley, “Circuit element utilizing semiconductive material,” U.S. Patent 2,569,347, Sept 25, 1951.
[5] H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proceedings of the IRE, vol. 45, no. 11, pp. 1535-1537, 1957.

延伸閱讀