透過您的圖書館登入
IP:18.221.146.223
  • 學位論文

建立蛋白質麩胱甘肽化特定位鑑定方法與結合質譜的免標定定量法策略

Site-specific Identification and Label Free Quantitation of S-glutathionylated Proteins

指導教授 : 林俊宏

摘要


麩胱甘肽 (GSH) 藉由其上的硫醇與蛋白質半胱胺酸 (cysteine) 的硫醇形成雙硫鍵稱為蛋白質的麩胱甘肽化 (S-glutathionylation) 。 S-glutathionylation 是一種可逆的蛋白質轉譯後修飾反應,能夠調控細胞內氧化還原平衡與保護細胞避免過度氧化。雖然目前有許多的方法可以偵測蛋白質的S-glutathionylation,但大部份的方法中並無法直接地獲得特定修飾位置的資訊。在本實驗室之前的研究中提出了利用將大腸桿菌的 Gsp synthetase 與 biotinyl-spermine 送入人類細胞中,以鑑定細胞內含有 S-glutathionylation 的蛋白質及其修飾位置。這個方法提供了有效率且可大規模分析相關的蛋白質體學。在本論文中,我們應用並最佳化此以 Gsp-biotin 為基礎的親合性純化修飾蛋白質,另外結合質譜分析,達到專一性的辨識 GSH 修飾的位置,以及對被 S-glutathionylation 的蛋白質進行定量。 在本論文中,我們使用蛋白質酪胺酸磷酸水解酶1B (protein tyrosine phosphatase 1B, PTP1B) 作為模式蛋白,以探討在蛋白質和胜肽層級上胰蛋白酶水解以及純化 GSH 修飾的蛋白質/胜肽的效率,建立及最佳化整個純化以及樣品前處理的步驟。目前為止,利用質譜分析 GSH-PTP1B 的極限最低可達 62 ng 。我們也使用 MS1 細胞株,一個在探討氧化還原研究中被廣泛使用的細胞株,來探討所建立的純化 GSH 修飾蛋白質/胜肽步驟的效率。於細胞外的條件下對 MS-1 細胞蛋白質進行 GSH 的修飾並結合質譜分析,目前辨識到了472條含有 GSH 修飾的胜肽以及其所屬的317個蛋白質。於辨識到的蛋白質中,其中有一些已有文獻廣泛的探討它們的 S-glutathionylaiton 。此外,在本研究所開發的方法中,不但可以專一性的辨識胜肽鏈上被 GSH 修飾的位置,還可以分辨同一條胜肽鏈上具有多個 cysteine ,哪一個 cysteine 是被 GSH 所修飾。 在免標定定量法的部分,我們結合高敏感性的質譜分析以及生物資訊學的工具 (IDEAL-Q) ,藉由估計萃取的離子層析圖譜 (extracted ion chromatography, XIC) 訊號峰底下的面積以估算各 S-glutathionylation 胜肽的量。我們在 MS-1 細胞的蛋白質中加入一序列不同量的 GSH-PTP1B ,在 LC-MS/MS 分析之後計算其被 S-glutathionylation 的三條胜肽鏈 (包括 HEASDFPC32(GSH)R, GSLKC121(GSH)AQYWPQK, ESGSLSPEHGPVVVHC215(GSH)SAGIGR ) 訊號峰下的面積。並以面積對濃度作圖以得到標準曲線,獲得定量的範圍落在 1.8 pmol 到 3.9 nmol 之間。 最後,在結合此一整套純化以及質譜分析的流程以及定量的方法之後,可以進一步探討 S-nitrosylation 與 S-glutathionylation 的關係,以及 S-nitrosylation 的穩定性與反應性。本論文不但提供一個有用的方法鑑定 S-glutathionylation 的蛋白質體,並可以深入探討細胞內氧化還原的調控機制。

並列摘要


Glutathione (GSH) forms a disulfide bond with cysteines of proteins, a dynamic way to regulate cellular redox balance and protect cells from oxidative damage. Although several methods are available to detect glutathionylated proteins, few of them provide direct assignment of modified cysteine residues. Previously we demonstrated an efficient method suitable for large-scale characterizations of glutathionylated proteins in vivo by introducing E.coli glutathionylspermindine synthetase (GspS) and biotinyl-spermine to human cells. In this thesis, we applied the method and optimized the conditions for the enrichment and subsequent mass spectrometric analysis to achieve site-specific GSH identification and quantitative proteomics. We utilized protein tyrosine phosphatase 1B (PTP1B), a well-known and extensively studied protein in redox biology, as a model to optimize the procedures of trypsin digestion and enrichment on both the protein and peptide levels. The detection limit of GSH-PTP1B was found to be 1.8 pmol. In MS-1 endothelial cells we have identified 472 unique glutathionylated peptides (mascot score ≥26, false decoy rate <2.21%) resulting from 317 glutathionylated proteins. Some of which were known to be glutathionylated. In addition, we are able to distinguish between S-glutathionylation and other cysteine modifications in one peptide. The label-free quantitative approach was carried out by integration of highly sensitive mass spectrometric techniques with bioinformatics tools (IDEAL-Q) to calculate the extracted ion chromatogram (XIC) of glutathionylation level on peptides. That is to say, we spiked a series of quantified PTP1B into MS-1 cell lysate and calculated the peak areas of three PTP1B peptides (including HEASDFPC32R, GSLKC121AQYWPQK, ESGSLSPEHGPVVVHC215SAGIGR ) during LC-MS/MS analyses. The range of quantitation is found between 1.8 pmol and 3.9 nmol. This developed method will be useful not only to identify and characterize glutathionylated proteins, but also to decipher how these identified cysteines are subjected to redox regulation.

參考文獻


1. Hopkins, F. G. (1921) Biochem J 15, 286-305
2. Quastel, J. H., Stewart, C. P., and Tunnicliffe, H. E. (1923) Biochem J 17, 586-592
3. Meldrum, N. U., and Dixon, M. (1930) Biochem J 24, 472-496
4. Nicolet, B. H. (1930) Science 71, 589-590
5. Griffith, O. W. (1999) Free Radic Biol Med 27, 922-935

延伸閱讀