透過您的圖書館登入
IP:18.119.131.178
  • 學位論文

二次側調變方法之主動箝位電流饋入式雙主動橋式轉換器

Secondary-Side Modulation Method for Active-Clamped Current-Fed Dual Active Bridge Converters

指導教授 : 陳耀銘

摘要


本論文提出一種應用於主動箝位電流饋入式雙主動橋式(Active Clamped Current-Fed Dual Active Bridge, AC-CFDAB)轉換器之二次側調變方法。由於低壓側電流饋入端的電感電流與漏感電流的不匹配會導致低壓側開關在截止時會有電壓突波,因此藉由增加主動箝位電路來吸收此不匹配電流。然而,在過去文獻中,本電路架構之升降壓操作皆未使用負載側的主動開關,因此本論文基於過去之升降壓操作方法增加二次側調變方法,使全部開關在降壓模式與升壓模式皆能達到零電壓切換,以提升轉換器效率,並藉由改變低壓側開關以及高壓側開關的同步方式來實現雙向功率的傳輸。 另外,在模式轉換的過程中,快速的電感電流變化會使得主動箝位電容電壓急遽變化,連帶導致漏感電流在暫態時變化量過大,容易造成轉換器損壞。因此本論文藉由LC串聯諧振的模型,取其諧振週期的數倍去計算模式轉換時的時間,以達到穩定的雙向功率傳輸。本論文詳細介紹並說明二次側調變方法之降壓模式與升壓模式的操作原理、數學公式推導以及軟切換條件的分析,並藉由1kW的AC-CFDAB轉換器的電腦模擬與實作結果來驗證本論文所提出方法的正確性與表現。

並列摘要


This thesis proposes a secondary-side modulation method for active clamped current-fed dual active bridge (AC-CFDAB) converters. In order to mitigate the voltage spike across the current-fed side switches caused by the current mismatching between the boost inductor and the leakage inductor, an active clamp cell is inserted in the low-voltage-side. In the past, the buck mode operation and boost mode operation of the AC-CFDAB converter didn’t utilize the load side active switches. A secondary-side modulation method is proposed to achieve the zero voltage switching feature for all switches during the boost mode and the buck mode operation. The bidirectional power transmission can be achieved by changing the synchronous point between the low-voltage-side switches and the high-voltage-side switches. On the other hand, during the mode-changing transient, if the current of the boost inductor changes abruptly, the voltage on the active clamp capacitor will change accordingly. Eventually, the leakage inductor will produce a spike current which can easily damage the converter. Therefore, an LC resonance model is introduced and the multiple of the resonant period is used to determine the transient time to achieve the smooth bidirectional power transmission. Details of the operation principle of the proposed secondary-side modulation method and the soft switching conditions are provided in this thesis. Simulations and experimental results of a 1kW prototype circuit are presented to validate the performance of the proposed secondary-side modulation method.

參考文獻


Y. Lu, Q. Wu, Q. Wang, D. Liu, and L. Xiao, "Analysis of a Novel Zero-Voltage-Switching Bidirectional DC/DC Converter for Energy Storage System," IEEE Trans. on Power Electron., vol. 33, no. 4, pp. 3169-3179, April 2018.
U. R. Prasanna, P. Xuewei, A. K. Rathore, and K. Rajashekara, "Propulsion System Architecture and Power Conditioning Topologies for Fuel Cell Vehicles," IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 640-650, Jan.-Feb. 2015.
F. Xue, R. Yu and A. Q. Huang, "A 98.3% Efficient GaN Isolated Bidirectional DC–DC Converter for DC Microgrid Energy Storage System Applications," IEEE Trans, Ind. Electron., vol. 64, no. 11, pp. 9094-9103, Nov. 2017.
N. Swaminathan and Y. Cao, "An Overview of High-Conversion High-Voltage DC–DC Converters for Electrified Aviation Power Distribution System," IEEE Trans. on Transp. Electr., vol. 6, no. 4, pp. 1740-1754, Dec. 2020.
N. Ullah, Z. Farooq, I. Sami, M. S. Chowdhury, K. Techato, and H. I. Alkhammash, "Industrial Grade Adaptive Control Scheme for a Micro-Grid Integrated Dual Active Bridge Driven Battery Storage System," IEEE Access, vol. 8, pp. 210435-210451, 2020.

延伸閱讀