透過您的圖書館登入
IP:3.17.157.78
  • 學位論文

巰基苯甲酸異構物對銅奈米團簇的製備及其螢光性質的影響

Isomeric Effect of Mercaptobenzoic Acids on the Preparation and Fluorescent Properties of Copper Nanoclusters

指導教授 : 張煥宗

摘要


本篇論文主要開發一步合成法在70 °C利用巰基苯甲酸(mercaptobenzoic acid)與銅離子反應30分鐘來合成發光銅奈米團簇聚集體(copper nanocluster aggregates),且藉由使用不同的巰基苯甲酸異構物,可合成出具有不同物理及光學性質的銅奈米團簇。以鄰、對巰基苯甲酸分別可合成出具有藍色及紅色放光性質的銅奈米團簇,其量子產率分別為13.2% 和 0.5%。另一方面,以間巰基苯甲酸合成的銅奈米團簇雖具放紅光性質,但十分微弱。隨著 pH 值的提高,鄰巰基苯甲酸與對巰基苯甲酸合成的銅奈米團簇,其螢光分別有上升以及下降的趨勢,其中對巰基苯甲酸之銅奈米團簇具有聚集誘導放光的性質,相較之下,由於鄰巰基苯甲酸之銅奈米團簇具有在水溶液分散性好、穩定以及高量子產率的特性,其可透過分析物誘導消光作用(analyte-induced fluorescence quenching)用於氰離子的偵測,其偵測極限(limit of detection)為 5 nM。

並列摘要


An one-pot approach has been developed to synthesize copper nanoclusters (Cu NCs) aggregates from copper nitrate and mercaptobenzoic acid (MBA) at 70 °C within 30 min. Cu NCs prepared separately from the three isomers of MBA exhibit different physical and optical properties. 2-Mercaptobenzoic acid (thiosalicylic acid, TA) and 4-mercaptobenzoic acid (4-MBA) allow preparation of blue- and red-emissive Cu NCs aggregates when excited at 338 and 324 nm, with quantum yields of 13.2% and 0.5%, respectively. On the other hand, Cu NCs aggregates prepared from 3-mercaptobenzoic acid (3-MBA) have very weak red-emission properties. Upon increasing pH values from 3.0 to 11.0, the fluorescence intensity of TA-Cu NCs and 4-MBA-Cu NCs aggregates increases and decreases, respectively. Unlike TA-Cu NCs aggregates, 4-MBA-Cu NCs aggregates show strong aggregation-induced emission. The water-dispersible, stable, and highly fluorescent TA-Cu NCs aggregates allow detection of CNˉ down to 5 nM, based on analyte-induced fluorescence quenching.

參考文獻


(1) De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.
(4) Choi, S.; Dickson, R. M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.
(5) Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858–871.
(6) Murray, R. W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720.
(7) de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676.

延伸閱讀