透過您的圖書館登入
IP:18.218.70.93
  • 學位論文

鉀-39之磁費許巴赫共振

Magnetic Feshbach Resonances of Ultracold K-39 Atoms

指導教授 : 易富國
共同指導教授 : 張銘顯(Ming-Shien Chang)

摘要


本實驗完成全光學式(all-optical configuration) 鉀-39原子之玻色-愛因斯坦凝結(Bose-Einstein condensates) 實驗之前期架設,並且取得該原子於基態|F = 1>各磁量子數之磁費許巴赫共振譜線(magnetic Feshbach resonances)。實驗裝置包含塞曼減速管(Zeeman slower)、磁光阱(magneto-optical trap, MOT)、光阱(optical dipole trap, ODT),本實驗分析並優化實驗條件。配合塞曼減速管,磁光阱的載入速率增加七倍,其載入速率為1.6秒,三秒約有10^8顆原子。經過次都卜勒冷卻(sub-Doppler cooling),於磁光阱之原子的溫度從2 mK降溫至80 K。目前光阱已成功載入10^6顆原子。因為鉀-39 具有吸引的原子交互作用力,不利於進一步之相空間提升,因此採取磁費許巴赫共振以調整原子散射態(scattering state) 與分子束縛態(bound state) 之耦合(coupling),進而改變原子交互作用力。目前磁場可高達近300 G。由於本實驗原子團製備過程為全光學式,其保留了各磁量子數之原子,因此將實驗獲得之共振磁場譜線與理論對照,已取得基態|F = 1>純化之磁量子數――mF = (1; 1) 與mF = (0; 0) 之費許巴赫共振譜線。

並列摘要


This study has completed initial set-up of potassium-39 Bose-Einstein condensates (BEC) and demonstrated the magnetic Feshbach resonances of atoms prepared by all-optical configuration. The experiment starts with loading a magneto-optical trap (MOT) from a Zeeman slower. Subsequently the laser-cooled atoms are then loaded into an optical dipole trap (ODT). With the slower, the loading rate increases by nearly 30 times. The MOT loading time constant achieves 1.6 s and the saturated atom number is equivalent to 10^8 at a temperature of 2 mK. After sub-Doppler cooling, the MOT temperature reaches 80 K and 10^6 atoms are successfully loaded in ODT. Since potassium-39 inherently has attractive interatomic interaction, which is detrimental to phase-space density enhancement of the atoms, Feshbach resonances is implemented to tune the coupling of a scattering state and a bound state of two colliding atoms. With cold atoms, which preserves Zeeman sub-levels states, two scattering channels with pure polarization–mF = (1,1) and mF = (0,0) of the F = 1 manifold have been observed. All information is enclosed in detail in this thesis.

參考文獻


[5] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Springer, 1999.
[6] G. Gribakin and V. Flambaum, “Calculation of the scattering length in atomic collisions using the semiclassical approximation,” Physical Review A, vol. 48, no. 1, p. 546, 1993.
[9] L. Bennie, “Large atom number magneto-optical traps,” 2010.
[12] R. Williamson and T. Walker, “Magneto-optical trapping and ultracold collisions of potassium atoms,” JOSA B, vol. 12, no. 8, pp. 1393–1397, 1995.
[13] G. Modugno, G. Ferrari, G. Roati, R. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms by sympathetic cooling,” Science,

延伸閱讀


國際替代計量