透過您的圖書館登入
IP:18.224.0.25
  • 學位論文

金屬離子輔助蝕刻法製備奈米線陣列在N型矽晶太陽能電池之應用

Fabrication of Nanowire Array by Metal-Assisted Etching and application on N-type Rear-Emitter Silicon Solar Cell

指導教授 : 藍崇文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在太陽能電池製作過程中,影響效率的主要因素有短路電流(Short-Circuit)損失、 開路電壓(Open-Circuit Voltage)損失及填充因子(Fill Factor)損失。其中主要影響電流的方面來自表面反射、電極遮蔽以及材料本身對於太陽光的吸收能力。抗反射層 (Anti-Reflection Coating)以及表面結構化(Surface Texturing)可以降低表面反射與提高光電流進而提高效率。 其中次微米表面結構化技術相較於傳統的抗反射層具有優越的寬頻譜抗反射能力, 有充分的潛力取代傳統的抗反射鍍膜。N 型結晶矽因其較高的少數載子壽命與金屬雜 質容忍能力,被認為是相當有潛力的太陽能電池材料。 本論文嘗試結合兩者利用銀離子於N 型矽晶片表面進行奈米線陣列的製作,製作 完成的奈米線分別測量其表面狀態與反射率。製備好的奈米線直徑約70 奈米。將製備 好的奈米線陣列晶片製作成太陽能電池利用太陽光模擬器以及光譜響應測量系統測量 其IV 特性曲線與光譜響應並嘗試以快速熱氧化處理進行鈍化效果的比較。且利用不同 蝕刻時間的奈米線電池研究奈米線長度對於效率的影響,最後利用多晶矽製作奈米線 電池而最佳的轉換效率可達10%。

並列摘要


In the process of solar cell fabrication, the factors of efficiency losses are Short-Circuit losses, Open-Circuit Voltage losses and Fill Factor losses. The Short-Circuit losses combined Reflection losses, Shading losses and absorption losses, Anti-Reflection Coating and Surface Texturing which can reduce the reflection losses to improve the efficiency. Compare with traditional Anti-Reflection Coating, Deep Sub-micron Surface Texturing has potential to replace the former due to its ability of Board-banded low reflectance. N-type crystalline silicon is recently attracted much attention due to higher minority carrier lifetime and toleration of metallic impurity. In this thesis, we fabricate the nanowire array on N-type silicon wafer through assisting of silver ions and analyze its morphology and reflectance. The diameter of nanowire is about 60nm. Finally, we fabricate the nanowire array solar cell and measure its IV character by Solar Simulator and Spectral response by Quantum Efficiency measurement device; we also discuss the effect of rapid thermo process for surface passivation and how different length effect on efficiency. Finally, we use multi-crystalline silicon to fabricate nanowire solar cell and reach the best efficiency to 10%

參考文獻


24. Hsu, W.C., et al., High-efficiency 6′′ multicrystalline black solar cells based on metal-nanoparticle-assisted chemical etching. International Journal of Photoenergy, 2012. 2012: p. 1-7.
photocell for converting solar radiation into electrical power. Journal of
2. Green, M.A., et al., Solar cell efficiency tables (version 39). Progress in
4. Ashcroft, N.W. and N.D. Mermin, Solid State Physics1976: Brooks/Cole.
6. Terrestrial photovoltaic measurement procedures, L.R. Center, Editor 1977,

被引用紀錄


蔡帛宏(2014)。利用金屬輔助蝕刻製作奈米孔洞在矽薄膜太陽能電池表面之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0408201413565200

延伸閱讀