透過您的圖書館登入
IP:3.135.195.249
  • 學位論文

準相位匹配之級聯光學參量振盪器與腔內倍頻黃光雷射之研究

The Study of Generation of Yellow Lasers by Quasi-Phase-Matching Optical Parametric Oscillators Cascaded with Intracavity Second Harmonic Generators

指導教授 : 彭隆瀚

摘要


本論文主要由四個部份構成:非線性光學理論、鐵電材料的特性及週期性反轉結構的設計方法、非線性光子晶體的設計及光學量測。 第一部份探討單週期式、啁啾式及變跡式結構的特性及非線性光學的理論。第二部份探討鐵電材料中最常用來當作非線性光學材料的鈮酸鋰及鉭酸鋰的特性、優缺點及比較各類鐵電材料的極化反轉方法以製作週期性反轉結構。第三部份以非線性光學及準相位匹配的理論設計能產生580 至595 nm 寬頻黃光的非線性光子晶體,同時計算其理論溫度頻寬、波長頻寬、等校非線性係數及出光頻譜等並和實驗做比對。第四部份為光學量測,光學參量振盪器量的出光功率、效率、頻譜與光束品質並探討與理論設計的差異,分析造成此結果的原因。經由光學量測可以發現,我們成功設在140 ± 1 ◦C 時有高效率(約12.34 %)及高功率(約24.5 mW)且不受溫度浮動影響的黃光雷射。

並列摘要


This thesis is mainly composed of four parts: the theory of nonlinear optics, the characteristics of ferroelectric materials and the design methods of periodically poled structures, the design of nonlinear photonic crystal, and the optical experiments. First, we investigate the characteristics of single period, chirped, and apodized structures and the theory of nonlinear optics. Second, we discuss the characteristics, advantages, and disadvantages of lithium niobate and lithium tantalate, which are most commonly used as nonlinear optical materials, and compare various methods of fabricating periodically poled structures. Third, we apply the theory of nonlinear optics and the mechanism of quasi-phase-matching to design a broadband yellow laser with wavelength coverage from 580 to 595 nm. We analyze the theoretical values of the temperature bandwidth, the wavelength bandwidth, the effective nonlinear coefficient, and the spectra of the output waves and compare them with the values acquired from experiments. The fourth part is about the optical measurement, we measure the output power, slope efficiency, spectra, and beam quality of the optical parametric oscillator. We analyze the conversion efficiency, compare the spectra between experiment and the theoretical design, and then explore the cause of discrepancy. From the results of optical measurements, we can confirm that our design can achieve high efficiency (about 12.34 %) and high power (about 24.5 mW) at about 140 ± 1 ◦C and is insensitive to the temperature variation of the nonlinear crystal.

並列關鍵字

QPM NPC OPO SHG SFG yellow laser

參考文獻


[1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493–494, Aug. 6, 1960. doi: 10.1038/187493a0.
[2] A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Tsao, “Fourcolorlaser white illuminant demonstrating high color-rendering quality,” Optics Express, vol. 19, no. S4, A982, Jul. 4, 2011. doi: 10.1364/OE.19.00A982.
[3] H. I. Lee, Y. Y. Lim, B. J. Kim, M. N. Kim, H. J. Min, J. H. Hwang, and K. Y. Song, “Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in asian patients,” Dermatologic Surgery, vol. 36, no. 6, pp. 885–893, 2010. doi: 10.1111/j.1524-4725.2010.01564.x.
[4] E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” Journal of the American Academy of Dermatology, vol. 49, no. 1, pp. 1–34, Jul. 1, 2003. doi: 10.1067/mjd.2003.582.
[5] C. F. Blodi, S. R. Russell, J. S. Pulido, and J. C. Folk, “Direct and feeder vessel photocoagulation of retinal angiomas with dye yellow laser,” Ophthalmology, vol. 97, no. 6, pp. 791–797, Jun. 1, 1990. doi: 10.1016/S0161-6420(90)32509-5.

延伸閱讀