透過您的圖書館登入
IP:18.191.171.20
  • 學位論文

水泥砂漿中鋼筋腐蝕之臨界氯離子濃度探討

A study on Critical Chloride Ion Concentration for Corrosion of Reinforcing Steel in Mortar

指導教授 : 詹穎雯

摘要


由於台灣四面環海,且處於亞熱帶與熱帶地區,所以對鋼筋混凝土結構物而言,屬於腐蝕性侵蝕的環境。而當氯離子侵入混凝土中,達到一定的含量時,鋼筋表面的鈍化層(passive layer)會被破壞,進而使鋼筋腐蝕,降低結構物的強度與勁度,對結構物造成極大威脅。因此,鋼筋腐蝕已成為影響結構物使用壽命和安全性的主要因素之一。 本研究藉由在混凝土拌合時,添加不同濃度的氯鹽,來模擬鋼筋在不同氯鹽濃度下的腐蝕情況,希望能藉此找出誘發鋼筋腐蝕之臨界氯離子濃度。另外使用非破壞檢測的方式來判斷鋼筋腐蝕的情況。而非破壞檢測是使用美國James儀器公司製作的Gecor 8腐蝕電流儀進行試驗,最後再將試體破壞取出鋼筋觀察鋼筋表面實際的腐蝕情況。另外再做初始酸鹼值試驗和酸中和試驗來縮小臨界氯離子濃度的範圍。 臨界氯離子濃度以[Cl-]/[OH-]表示時,0.45、0.55、0.65的OPC以及水膠比0.55使用50%的爐石取代量的臨界值分別1.095、0.99、1.018和5.185。以[Cl-]/[H+]表示時,0.45、0.55、0.65的OPC以及水膠比0.55使用50%的爐石取代量的臨界值分別0.0057、0.0057、0.0063和0.014。使用爐石取代部分水泥可以使鋼筋開始腐蝕的臨界氯離子濃度提高,增加對鋼筋的保護能力,提高耐久性。

並列摘要


Taiwan is surrounded by sea, so the reinforced concrete structures are exposed to corrosive environments. When chloride ions penetrated into the concrete, to reach a certain concentration, the reinforcing steel surface passive layer be destroyed and cause the steel corrosion, it will reduce structure strength and stiffness. Therefore, the reinforcing steel corrosion is the main factors to structures life and security. This study add different concentrations of chloride salts when the concrete mixing, to simulate the reinforcing steel corrosion situation at different chloride concentrations, to identify the critical chloride ion concentration. Use non-destructive testing to determine the corrosion situation of reinforcing steel. Final destruct the specimen and remove the reinforcing steel to observe actual corrosion. Do other tests like initial pH value and acid neutralization tests to narrow the critical range of chloride ion concentration. Critical chloride ion concentration thresholds [Cl-] / [OH-] for OPC 0.45, 0.55, 0.65 and 0.55-50% GGBS are 1.095, 0.99, 1.018 and 5.185, respectively. [Cl-] / [H+] for OPC 0.45, 0.55, 0.65 and 0.55-50% GGBS are 0.0057, 0.0057, 0.0063 and 0.014, respectively. Using slag replace part of cement will increased the critical chloride ion concentration, increasing the protection of steel capacity, improve durability.

參考文獻


[68] 陳正平,「談海砂屋鑑定」,台灣省土木技師公會技師報,2011。
[1] Uhlig, H.H. and Revie, R.W. Corrosion and Corrosion Control. New York: Wiley, 1985, pp.28-35.
[2] Andrade, C., Castellote, M., Sarria, J. and Alonso, C., “Evolution of Pore Solution Chemical, Electroosmosis and Rebar Corrosion Rate Induced by Realkalisation,” Materials and Structures, Vol.32, pp.427-436,1999.
[3] Shalon, R. and Raphael, M., “Influence of Sea Water on Corrosion of Reinforcement,” ACI Journal, Vol. 55, No.12, pp.1251-1268,1959.
[5] Hussain, S.E. and Al-Saadoun, S.S., “Effects of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete, “ Cement and Concrete Research, Vol. 21, No.6, pp.777-794, 1991.

被引用紀錄


許家禎(2017)。乾溼循環下氯離子於混凝土中之傳輸行為探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703029
鄭誠竣(2016)。不同靜水壓力下混凝土之氯離子傳輸行為〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201602403

延伸閱讀