透過您的圖書館登入
IP:3.144.233.150
  • 學位論文

利用第一原理模擬四元半導體銻磷砷化銦的能帶結構

First-Principle Calculations of Band Structures of InAsPSb

指導教授 : 林浩雄

摘要


利用第一原理軟體V.A.S.P.模擬四元合金銻磷砷化銦的能帶結構,並以雜化泛函(hybrids function)與自旋耦合效應(spin-orbit coupling effect)加以修正,模擬二元合金砷化銦、磷化銦與銻化銦的能帶結構,得能隙結果為0.416、1.325、0.178(eV),費米能量為2.979、3.211與3.823(eV) 模擬不同成份的銻磷砷化銦((In4P3Sb1, In4As1P2Sb1, In4As2P1Sb1),得到的能隙為0.610、0.457、0.225(eV),費米能量為3.507、3.613與3.259(eV)。 In4As0P3Sb1中,當銻原子加入磷化銦中時,使費米能量上升,導電帶能量下降,能隙變小;在In4As1P2Sb1中,從In4As0P3Sb1中再加入一顆砷原子,因為砷原子的加入,使原子的排列變混亂,使費米能量提高,導電帶則維持在銻化銦附近;在In4As2P1Sb1中,因為在砷化銦中摻雜磷與銻原子,使費米能量提升,但與同樣為四元材料In4As1P2Sb1相比,發現費米能量卻降低許多,是因為砷的原子半徑較磷原子大,因為晶格內部的排列較不易混亂。 實驗中,摻雜銻原子後會使能隙下降,但經由態密度分析,發現銻原子在導電帶最低點並不提供態密度。

並列摘要


We simulate the bandstructure of binary alloy InAs, InP, InSb and quaternary alloy InAsPSb (InAs0P3Sb1, In4As1P2Sb1, In4As2P1Sb1) by using the simulation package, V.A.S.P., and we use hybrids function and consider spin-orbit coupling effect to correct the bandgap. The result of binary alloy are 0.416, 1.325, 0.178(eV), and quaternary alloy are 0.610, 0.457, 0.225 (eV). The Fermi energy by simulation is 2.979, 3.211 and 3.823(eV) for binary alloy InAs, InP and InSb, and the Fermi energy of quaternary alloy is 0.610, 0.457, 0.255(eV). In In4As0P3Sb1, when antimonide is doped in indium phosphide, it causes the raise of Fermi energy, and the conduction band goes down to get closer to the indium antimonide, In In4As1P2Sb1, we find the Fermi energy rises more, but the indium arsenide’s Fermi energy is lowest among of binary alloy. We speculate it is because of the adding of arsenide, making the atoms in the crystal more mess than In4As0P3Sb1. The conduction band still hangs around indium antimonide; In In4As2P1Sb1, phosphide and antimonide are doped in indium arsenide, making the raise of Fermi energy, but its Fermi energy is lower than In4As1P2Sb1. We speculate it is because the atom in crystal is neater than In4As1P2Sb1. In analysis of density of states, antimonide will make bandgap go down, but it will not provide any states in conduction band around the bandgap.

參考文獻


[9] Xiu Ying Gong, Tomuo Yamaguchi, Hirofumi Kan, Takamitsu Makino, Takefumi Iida, Takayoshi Kato, Mitsuru Aoyama, Yasuhiro Hayakawa, and Masashi Kumagaqa “Room temperature InAsPSb/InAs Photodetectors with High Quantum Efficiency,” Jpn. J. Appl. Phys., vol 36, pp. 2614-2616, 1997.
[29] Mu-chi Liu, Zhe Chuan Feng, Hao-Hsiung Lin, “X-ray Absorption Near Edge Structure of Silicon in Indium Arsenide”,Optic 2014, 2014
[1] Z. H. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G.B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys., vol 67, pp.7034-7039, 1990.
“Optical absorption and emission of InP1-xSbx alloys,” J. Appl. Phys., vol 68, pp. 4604-4609, 1990.
[3] E. R. Gertner, D. T. Cheung, A. M. Andrews, and J. T. Longo, “Liquid phase epitaxtal growth of InAsxSbyP1-x-y layers on InAs,” J. Electron. Mater., vol 6, pp. 163-170,1997.

延伸閱讀