透過您的圖書館登入
IP:3.83.87.94
  • 學位論文

六輕石化工業區營運及意外排放對於周遭社區空氣品質的影響評估

Assessing Air Quality Impacts in the Surrounding Areas of the No. 6 Naphtha Cracking Complex during Operations and Accidents

指導教授 : 詹長權

摘要


第一個研究由單一個空氣品質測站的監測資料,透過污染玫瑰圖(Pollution roses, PR)來評估二氧化硫(SO2)對於大型石化工業區工廠下風處鄉鎮之衝擊,污染玫瑰圖整合環保署空氣品質測站-臺西測站的小時SO2濃度平均值,該測站距離六輕工業區內二氧化硫(SO2)排放源約7.8-13.0公里。我們使用的污染玫瑰圖是以36方位作為區分,並依3個營運階段進行評估:營運期前期(1995-1999)和兩個階段的營運期(2000-2004及2005-2009),發現在臺西站二氧化硫(SO2)的第99百分位小時濃度,當風向來自於350°,也就是六輕工業區下風,濃度從營運前的28.9 ppb,在營運之後增加至86.2-324.2 ppb,。尤其是在第二階段營運期、風速在6-8公尺/秒下風處二氧化硫(SO2)濃度特別的高。本研究也發現二氧化硫(SO2)小時濃度只有在營運之後(2001年-2009年)會超過美國環保署(U.S. EPA)所制定75 ppb以健康為基礎的濃度標準,在0°-10°和330°-350°下風處總共有65個值超過標準值。用單一監測站的資料繪製成污染玫瑰圖,可以做為排放源對工業區附近空氣污染研究的重要工具,並且分析不同風速、每日時間和石化工業發展階段對污染變化影響。第二個研究由兩個測站空氣品質測站的監測資料,透過污染玫瑰圖(Pollution roses, PR)評估揮發性有機物對於大型石化工業區工廠下風處鄉鎮之影響。空氣品質監測站是接近六輕工業區,架設於麥寮海豐分校的移動站與臺西站固定站,兩個測站距離六輕工業區約3-5公里,以36方位的方式區分資料,監測時間分別為2009-2001年與2007-2013年。於六輕下風處的苯(Benzene)與甲苯(Toluene)濃度分別為3.26 ppb -5.27 ppb與10.26 ppb -8.26 ppb,風向分別來自300度-310度由六輕東邊吹到麥寮移動站與330度-340度由六輕工業區南邊吹向的臺西站。下風處所測得苯/甲苯比例(ratio) 在95-99百分位大於3,同時風速是10-23 m/s,氣象條件證明來自於六輕工業區的高風速風向,工業區所排放污染物就會傳送到監測點。利用兩個鄰近工業區監測站的監測資料所繪製的污染玫瑰圖,能夠用來評估工業區的污染源對監測點的貢獻。政府有關單位設置空氣品質監測站是用來管制記錄日常傳統空氣污染物之排放,但是無法完全適用進行石化工業意外大火所引起有害空氣污染物的排放監控。於2011年5月12日,本研究結合多種空氣監測系統,包括線上霍氏紅外線光譜儀、火焰離子氣相層析儀與離線式的氣相層析質譜儀,用來進行臺灣中部石化工業區火災期間與之後空氣中有害污染物監測,研究結果發現距離10公里起火點的下風處,測到空氣中由燃燒引起與石化工業有關而且濃度明顯高於一般狀態的氣態與微粒態污染物,包括1,2-二氯乙烷(1,2-dichloroethane)、氯乙烯單體(vinyl chloride monomer)和二氯甲烷(dichloromethane)。本研究同時以反軌跡與擴散模式進一步模擬來自於因大火停工的二十二座工廠排放高濃度有害空氣污染物,經由氣流帶到鄰近村落,證明以完整的空氣品質監測與反軌跡氣流模式能夠有效追蹤工業意外產生有害空氣的污染源。

並列摘要


The first study used pollution roses to assess sulfur dioxide pollution in a township downwind of a large petrochemical complex based on data collected from a single air monitoring station. Our pollution roses summarized hourly sulfur dioxide concentrations at the Taishi air-quality monitoring station, located approximately 7.8-13.0 km south of the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during the pre-operational period (1995-1999) and two post-operational periods (2000-2004 and 2005-2009). The 99th percentile of hourly SO2 concentrations 350o downwind from the complex increased from 28.9 ppb in the pre-operational period to 86.2-324.2 ppb in the two post-operational periods. Downwind sulfur dioxide concentrations were particularly high during 2005-2009 at wind speeds of 6-8 m/s. Hourly sulfur dioxide levels exceeded the U.S. EPA health-based standard of 75 ppb only in the post-operational periods, with 65 exceedances from 0°-10° and 330°-350° downwind directions during 2001-2009. This study concluded that pollution roses based on a single monitoring station can be used to investigate source contributions to air pollution surrounding industrial complexes, and that it is useful to combine such directional methods with analyses of how pollution varies between different wind speeds, times of day, and periods of industrial development. The second study used pollution roses to assess volatile organic compounds (VOCs) pollution in townships neighboring a large petrochemical complex based on data collected from two air monitoring stations. Our pollution roses summarized hourly VOC concentrations from two photochemical air monitoring stations at Mailaio and Taishi Township, located approximately 3-5 km away from the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during 2009-2001 and 2007-2013. The 99th percentile of hourly concentrations of benzene and toluene downwind from the complex were 3.26 ppb - 5.27 ppb and 10.26 ppb - 8.82 ppb in two locations spanning from 300-310 degree to the east and from 330-340 degree to the sourth. Downwind benzene/toluene ratio were particularly high at wind speeds of 10-23 m/s, higher benzene/toluene ratio (> 3) were observed at 90-99 percentiles. When wind directions allow the pollutants transport from industrial area to the monitoring site, then high benzene/toluene ratio was observed. This study concluded that pollution roses based on two monitoring stations can be used to investigate source contributions to air pollution surrounding industrial complexes. Finally, the air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire. Two back trajectories were calculated using 5-min average wind speed and direction to further confirm the high levels of hazardous air pollutants in the neighboring communities, which could be traced back to emissions from 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

參考文獻


[1] J.-f. Chen, S.-q. Wei, K.-t. Chang, B.-w. Tsai, A comparative case study of cultivated land changes in Fujian and Taiwan, Land Use Policy, 24 (2007) 386-395.
[2] T.-g. Kim, J.-h. Kim, Y.-d. Kim, K.-i. Kim, Current risk management status of the Korean petrochemical industry, Journal of Loss Prevention in the Process Industries, 15 (2002) 311-318.
[3] K. Charmondusit, K. Keartpakpraek, Eco-efficiency evaluation of the petroleum and petrochemical group in the map Ta Phut Industrial Estate, Thailand, Journal of Cleaner Production, 19 (2011) 241-252.
[4] G. Zeng, H. Bathelt, Divergent growth trajectories in China's chemical industry: the case of the newly developed industrial parks in Shanghai, Geojournal, 76 (2011) 675-698.
[6] A.M. Jones, R.M. Harrison, Temporal trends in sulphate concentrations at European sites and relationships to sulphur dioxide, Atmos. Environ., 45 (2011) 873-882.

被引用紀錄


胡偉興(2014)。揮發性有機物洩漏逸散特性之研究-球閥為例〔博士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2014.00182
洪培真(2016)。空氣汙染對新生兒健康的影響--以雲林六輕工業區為例〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU201601764
楊淞淵(2014)。利用石墨烯-聚甲基丙烯酸甲酯複合材料以溶液製程開發電阻式甲醛氣體感測元件〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2014.10100
蕭欣怡(2009)。六輕工業區鄰近地區空氣污染及居民健康風險評估〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2009.01639
李昌翰(2004)。台灣地區揮發性有機污染物之時空分佈 及健康風險評估〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342%2fNTU.2004.02032

延伸閱讀