透過您的圖書館登入
IP:3.144.252.140
  • 學位論文

可交聯型釕金屬錯合物與其交聯劑在染料敏化太陽能電池之應用

Applications of Crosslinkable Ruthenium Complex and Its Crosslinker on Dye-sensitized Solar Cells

指導教授 : 林金福
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究合成一帶有可進行聚合反應之苯乙烯官能基的釕金屬染料Ru(4,4’-dicarboxylic acid) (4,4'-bis((4-vinylbenzyloxy)methyl) -2,2'- bipyridine)(NCS)2 簡稱 Ru-S 。利用NMR、IR、UV-Vis光譜等方式鑑定其結構,並進一步以UV-Vis光譜測試其吸附在TiO2表面後以Glycerol propoxylate triacrylate(GPTA)進行共聚合反應後的脫附實驗,探討其與TiO2鍵結的穩定性。在太陽能電池元件的表現上,以3-methoxypropyl nitrile (MPN)為溶劑的液態電解質時以不同濃度的GPTA進行表面聚合改質後,可以將原本7.53%的效率分別提升至7.88%。而以polymethacrylate膠態電解質製備的元件則能將效率從6.96%增加至7.57%。 另一部分則以改變液態電解質中Li+的濃度來觀察以GPTA表面改質前後的電池表現。 在缺乏或低濃度Li+的液態系統中,表面聚合改質皆可以在最佳化濃度下呈現出比原本較高的效率表現。 但在高濃度的Li+電解質下,由於改質後元件的短路電流提升效果不明顯,且Voc下降,造成效率並未得到改善。 從吸附在TiO2上Ru-S染料的IR光譜實驗可證明Ru-S染料本身即具有螯合Li+減緩因提高Li+濃度造成Voc下降的能力。量測IMPS/IMVS時發現,隨著LiI濃度提升,電子收集效率也會愈高,證明Li+有加速I-/I3-移動的能力。最後,我們選用PMA膠態電解質進行封裝,量測元件的長效性。於室溫下經過一個月發現效率仍可保有原先水準,唯獨以AIBN起始劑交聯的Crosslinked Ru-S的效率會略降。

並列摘要


We synthesized the crosslinkable ruthenium complex with styryl groups attached on the bipyridine ligand, denoted as Ru-S which was characterized by NMR, IR, and UV-Vis spectroscopies. Its stability after crosslinking and copolymerization with Glycerol propoxylate triacrylate(GPTA) were measured by UV-Vis spectroscopy. By using the MPN based liquid electrolyte, the efficiency of DSSCs crosslinking with proper amounts GPTA increased from 7.53% to 7.88%. However, using the PMA-gelled electrolyte system, the device performance was raised from 6.96% to 7.57%. On the other hands, the DSSC with GPTA-crosslinked Ru-S dye and with various Li+ concentrations in liquid electrolytes were studied. At low Li+ concentration, the efficiency was increased with the content of Li+. However, at high Li+ concentration, although the short current was slightly increased with the content of Li+ but the Voc was decreased, leading to lower power efficiency. The Li+-coordination capability of Ru-S was then investigated by IR spectroscopy, which was used to explain the slow decreasing trend of Voc as the Li+ concentration was increased in the electrolyte system.

參考文獻


Cordeiro, I. Ma. F. de Oliveira, S. Carvalho, and E. B. Paniago, J. Braz.
11. M. Grätzel, K. Kalyanasundaram, Curr. Sci. 66, 706 (1994)
41.K.-J. Jiang, N. Masaki, J. Xia, S. Nodab, and S. Yanagida, Chem. Commun.
77. P. J. Li, J. H. Wu, M. L. Huang, S. C. Hao, Z. Lan, Q. H. Li, S. J. Kang,
78. P. Petrov, I. Berlinova, C. B. Tsvetanov, S. Rosselli, A. Schmid, A. B.

被引用紀錄


林筱莉(2013)。利用聚苯胺/多層奈米碳管/石墨烯複合材料製作染料敏化太陽能電池對電極之製程及性能研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00130
葉珈妏(2012)。陰離子物理吸附多層奈米碳管在染料敏化太陽能電池光電極之應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.00139

延伸閱讀