透過您的圖書館登入
IP:3.144.96.159
  • 學位論文

利用聚二甲基矽氧烷改善離子高分子金屬複合物之表面粗糙度以及其應用於可形變鏡面之研究

Research of Improving the Surface Roughness of IPMC by Using PDMS and Its Application in Deformable Mirror

指導教授 : 蘇國棟

摘要


離子高分子金屬複合物(IPMC)是一種當處在電場下時,會表現出彎曲行為的複合性材料。傳統上採用的IPMC製程,一般包含一個粗糙化的步驟。粗糙化可以帶來更佳的電極附著性以及更好的制動表現等優點。但是粗糙化所造成的極大的表面粗糙度同時也會在許多應用上形成阻礙,特別是在可形變鏡面應用的方面。 在這篇論文中,我們保留了粗糙化的程序,並且提出一種運用聚二甲基矽氧烷的附加性的製程去改善IPMC的表面粗糙度以及一些其他特性。經過此表面改善製程之後,IPMC的表面方均根粗糙度可以低至28 nm的程度,並且在3伏特的偏壓底下可以成功的制動。另外我們也發現經過改善後的IPMC在大氣環境下的耐用度是未改善的IPMC的約15倍。其他改善製程所帶來的影響,包括反射率、表面散射程度、電阻以及制動表現也會同時討論。最後,我們應用這種改善方法來實現一種IPMC可形變面鏡樣式設計,並量測其制動效果。

並列摘要


Ionic polymer metallic composite (IPMC) is a composite material that could perform a bending deformation in an electric field produced by a small bias voltage. A necessary roughening process is generally included in the conventional IPMC fabrication. The roughening process brought several advantages, such as better adhesion and actuation performance. However, the resulted large surface roughness becomes an obstacle in some IPMC applications, especially deformable mirror. In this thesis, we preserve the roughening process and advance an additional fabrication using polydimethylsiloxane (PDMS) to improve the surface roughness as well as other properties of IPMC. The root-mean-square surface roughness is lowered to 28 nm, and the surface-improved IPMC could be successfully actuated under a 3-volt bias voltage. We also find that the duration under atmosphere is 15 times longer than that of the non-improved IPMC. The effect of the surface-improved fabrication on reflectance, surface scattering content, resistance and actuation performance are discussed as well. At last, we adopt the surface-improved method to realize a patterned IPMC deformable mirror, and the deformation is measured.

並列關鍵字

IPMC Deformable Mirror roughness duration.

參考文獻


[3] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., Vol. 85, No. 7, pp. 1128, 2004.
[4] H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Optics Express, Vol. 14, No. 18, pp. 8031, 2006.
[5] H. Ren and S.T. Wu “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett., Vol. 86, pp. 211107, 2005.
[6] H. Ren and S.T. Wu, “Variable-focus liquid lens,” Optical Express, Vol. 15, No. 10, pp. 5931, 2007.
[7] M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid Control in Multichannel structure by electrocapilary pressure,” Science, Vol. 291, pp. 277, 2001.

延伸閱讀