透過您的圖書館登入
IP:18.191.228.88
  • 學位論文

以無高分子轉印方法及雙層電極改良石墨烯與不同金屬之接觸電阻

Optimizing contact resistance between graphene and different metal via double layer electrode and polymer-free transfer method

指導教授 : 吳志毅
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


因現今積體電路設計不斷縮小化,微影技術將會面臨製程上的限制,在閘極長度縮小至七奈米下時,各種物理狀況如漏電流也越來越難加以控制,在這種傳統由上而下的縮小方式越來越難以發展的情形下,近來由於石墨烯具有相當高的載子遷移率,因此被視為下一代半導體電子元件的材料, 也就是所謂由下而上的建構方式,單層石墨烯因為其具有高穩定性、高載子遷移率,獨特的光學性質,對於未來取代目前以矽為主的半導體工業有著相當高的相容性。本研究先以化學氣相沉積法在銅箔上成長大面積的石墨烯,再將石墨烯轉印至二氧化矽基板上並利用電子束微影製作傳輸線模型以量測石墨烯與金屬的接觸電阻,透過紫外光光電子能譜與X光光電子能譜儀探討石墨烯與金屬的介面。為了更加降低石墨烯與金屬的接觸電阻,利用無高分子轉印石墨烯,不同於一般傳統的高分子輔助轉印法,無高分子轉印法沒有高分子聚合物的殘留,藉由分析元件電學性質的表現,像是接觸電阻與電子遷移率的比較,迪拉克點的位置以比較兩種轉印方法的優缺。而利用替代摻雜、表面摻雜等方式造成P-型及N型的石墨烯電晶體可調控的特性也陸續被使用,本論文中是利用表面摻雜的方式,藉由上下兩層金屬的電子轉移作用改善石墨烯與金屬的接觸電阻,並量測雙層金屬石墨烯結構的電晶體元其電性與一般傳統電晶體的比較。本研究最後成功的將化學氣相沉積法所成長出的石墨烯將其接觸電阻降低至單晶石墨烯的品質,未來有機會取代矽,成為半導體元件的主流材料。

並列摘要


Owing to reports of graphene’s extremely high intrinsic mobility and unique structure. this thesis reviews the history on electronic property of graphene at the first, and it explains why graphene became the most popular material recently.Contact resistance is one of the important research topics among the diverse researches of graphene. In seconed part of this thesis, we discuss the contact resistance on graphene and metal., we use electron beam lithograph to fabricate the TLM pattern for reach the single crystal carrier mobility,and discuss the date by XPS and UPS .Furthermore, we compare the polymer free method with PMMA transfer to lower the contact resistance. By this method, we can use polycrystalline graphene to reach higher mobility. Thus, the results will be much better than before. Then a new double-contact geometry for graphene devices is fabricated and compared to top contacts

參考文獻


[29] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, "Graphane: A two-dimensionalhydrocarbon," Physical Review B, vol. 75, Apr 2007.
[23] M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical Review Letters, vol. 98, May 18 2007.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, etal., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669,Oct 22 2004.
[2] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, et al.,"Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates," IeeeElectron Device Letters, vol. 30, pp. 650-652, Jun 2009.
[4] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol.324, pp. 1312-1314, Jun 5 2009.

延伸閱讀