透過您的圖書館登入
IP:3.145.119.199
  • 學位論文

多軸大行程奈米定位平台之設計與控制

Design and Control of an Integrated Multiple-Axis Long-Stroke Nano-positioning Stage

指導教授 : 王富正

摘要


本論文發展大行程精密定位平台,首先發展一個X-Y-θ三維壓電平台,然後整合一個Z-φ-ψ三軸壓電平台,完成六軸精度平台;最後則整合步進馬達平台,完成一個大行程奈米精密定位平台。 隨著科技發展,載台的精度定位需求隨之增加,但傳統機械元件無法滿足高精度之需求,所以壓電材料逐漸被應用作為精密定位平台之驅動器。壓電材料具有高精度,高出力,高解析度之優點,但卻有遲滯,潛變等非線性動態特性及移動行程過小等缺點。為使載物平台更進一步的提升,首先,吾人先利用系統鑑別得到一個維壓電平台之轉移函數,並且透過強韌控制理論,將其非線性因素視為系統不確定性,設計強韌控制器,降低非線性因素,並確保系統穩定。其次,我們整合一個互補三維平台,發展一個六軸奈米精度平台。最後,同時為了擁有較大的移動行程,我們結合步進馬達平台,進行大行程移動。步進馬達具有易於控制且高出力等特性,但卻有解析度限制以及失步現象,所以我們針對步進馬達進行路徑規劃以及相位補償設計,以提升其系統性能。最後將壓電平台與步進馬達平台進行整合,以達到大行程,高精度之大行程奈米精度平台。所設計之大行程奈米精密定位平台,經實驗驗證,確實可以達到預設之目標。

並列摘要


This thesis develops a long-travel, nano-positioning stage. We develop a three-dimensional piezoelectric (PZT) stage, and integrate a compensated three-dimensional stage to achieve six-dimensional nano-positioning. Then we combine the PZT stages with a stepper stage to accomplish a long-stroke precision-positioning stage. As technology develops, precision positioning is increasingly important. Because traditional mechanical structures cannot satisfy the nano-positioning requirements, piezoelectric materials are normally applied to drive the precision stages because of the advantageous properties, such as high precision, large force and high resolution. However, the performance of PZT stages is also constrained by their limited travel and the nonlinear properties, such as hysteresis and creep. Therefore, in this thesis we design robust controllers to improve system performance and stability of a X-Y-θPZT stage, and then integrate it with a Z-φ-ψ stage to accomplish six-dimensional nano-positioning. Last, we integrate the PZT stage with a stepper stage to achieve long-stroke precision positioning. Because the stepper motor stage has the disadvantages of limited resolution and fall-out step, we design path-adjustment and phase-compensation to improve its performance. The experimental results demonstrate the effectiveness of the developed combined stage.

參考文獻


[1] Kung, Y. S., & Fung, R. F. (2004). Precision control of a piezoceramic actuator using neural networks. Journal of dynamic systems, measurement, and control, 126(1), 235-238.
[2] Song, G., Zhao, J., Zhou, X., & Abreu-Garcia, D. (2005). Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. Mechatronics, IEEE/ASME Transactions on, 10(2), 198-209.
[4] Tomita, Y., Koyanagawa, Y., & Satoh, F. (1994). A surface motor-driven precise positioning system. Precision engineering, 16(3), 184-191.
[5] Gao, W., Dejima, S., Yanai, H., Katakura, K., Kiyono, S., & Tomita, Y. (2004). A surface motor-driven planar motion stage integrated with an< i> XYθZ surface encoder for precision positioning. Precision Engineering, 28(3), 329-337.
[8] Choi, G. S., Lim, Y. A., & Choi, G. H. (2002). Tracking position control of piezoelectric actuators for periodic reference inputs. Mechatronics, 12(5), 669-684.

延伸閱讀