透過您的圖書館登入
IP:18.191.140.76
  • 學位論文

毫米波駐波振盪器與雙向寬頻相移器之分析與設計

Design and Analysis of Standing-Wave Oscillator and Bi-Directional Wide-Band Phase-Shifter for Millimeter-Wave Application

指導教授 : 林坤佑

摘要


隨著技術的進步,人類邁入毫米波頻率領域與各種應用中。汽車雷達和通信是兩個重要的應用領域。前者個需求與日俱增,因為近年來自動駕駛汽車已成為趨勢。後者隨著5G通信的蓬勃發展而有所進步。隨著系統變得越來越複雜,如何在有限的電路當中加入更多的功能成為一個重要的議題。本論文針對上述兩種情況提出了各自的解決方案。 對於第一個電路,提出了操作在24 GHz / 77 GHz的雙頻連續調節駐波振盪器,以及根據對多模駐波結構的頻率進行數值分析得出的一組直觀的設計方針。這個雙頻振盪器是為汽車雷達應用而設計。而論文中提出創新的設計方針能使多模態 駐波振盪器的設計更加直觀。論文中將陳述包括如何將設計方針帶入實際的世紀中,以及為提高品質因數而付出的努力以及其他振盪器設計細節。 對於第二電路,提出了一種雙向雙頻可變增益移相器,其工作頻率為28 GHz / 39 GHz。它是雙向波束成形收發器的子系統,可為未來的5G通信提供新的解決方案。該電路由傳輸線延遲移相器和可變增益放大器組成。將在論文中敘述設計挑戰以及相對應的解決方式,包括雙向設計,系統上的考慮,相位變化和如何在有限的佈局面積中完成設計等挑戰。

並列摘要


Following the progressive steps of technology, human has found its way into the realm of millimeter-wave frequencies and all kinds of applications. Automobile radars and communication are two important fields of application. The first one sees its demand as self-driving cars have become a trend in recent years. The latter one blooms with the thriving of 5G communication. As the systems become more complex, integrating the functions and circuits becomes more vital over time. This thesis proposed multi-function circuits for each scenario mentioned above. For the first circuit, a dual-band continuous-tuning standing-wave oscillator operates in 24 GHz / 78 GHz was proposed, along with a set of intuitive design guidelines from the numerical analysis about the frequencies of the multi-mode standing-wave structure. The dual-band oscillator was designed for automobile radar application. The design guidelines were the first to be reported to make the design of a multi-mode standing-wave oscillator more straightforward. The stated design details include applying the design guidelines, the efforts done to improve the quality factor, and other oscillator design details. For the second circuits, a bi-directional dual-band variable-gain phase shifter operates at 28 GHz/ 39 GHz was proposed. It is a sub-system for a bi-directional beamforming transceiver to provide a new solution to future 5G communication. The circuit is consisting of a transmission line delay phase shifter and a programmable gain amplifier. The design challenges would be stated with corresponding solutions, including the challenge of bi-directional design, system-level considerations, phase variation, and limited layout area.

參考文獻


[1] Z. Yang and R. Y. Chen, “High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator,” IEEE Microw. Wirel. Compon. Lett., vol. 26, no. 9, pp. 714–716, Sep. 2016, doi: 10.1109/LMWC.2016.2597174.
[2] A. Basaligheh, P. Saffari, W. Winkler, and K. Moez, “A Wide Tuning Range, Low Phase Noise, and Area Efficient Dual-Band Millimeter-Wave CMOS VCO Based on Switching Cores,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 66, no. 8, pp. 2888–2897, Aug. 2019, doi: 10.1109/TCSI.2019.2901253.
[3] S. Jain, S. Jang, and N. T. Tchamov, “Tuned LC-Resonator Dual-Band VCO,” IEEE Microw. Wirel. Compon. Lett., vol. 26, no. 3, pp. 204–206, Mar. 2016, doi: 10.1109/LMWC.2016.2526690.
[4] J. Baylon, P. Agarwal, L. Renaud, S. N. Ali, and D. Heo, “A Ka-Band Dual-Band Digitally Controlled Oscillator With −195.1-dBc/Hz FoM $_T$ Based on a Compact High- $Q$ Dual-Path Phase-Switched Inductor,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 7, pp. 2748–2758, Jul. 2019, doi: 10.1109/TMTT.2019.2917671.
[5] Y. Peng, J. Yin, P. Mak, and R. P. Martins, “Low-Phase-Noise Wideband Mode-Switching Quad-Core-Coupled mm-wave VCO Using a Single-Center-Tapped Switched Inductor,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3232–3242, Nov. 2018, doi: 10.1109/JSSC.2018.2867269.

延伸閱讀