透過您的圖書館登入
IP:3.147.104.248
  • 學位論文

反式串疊型高分子太陽能電池

Inverted Tandem Polymer Solar Cells

指導教授 : 林唯芳

摘要


此論文的目標在於製作穩定且高效率的高分子太陽能電池。為了達此目標,我們嘗試製作反式串疊型高分子太陽能電池。 我們選擇高能隙高分子聚三己基噻吩(P3HT)及新型富勒烯衍生物(ICBA)作為串疊型高分子太陽能電池中第一子電池的主動層材料,並搭配電子傳導層氧化鋅(ZnO)及電動傳導層聚乙烯二氧噻吩(PEDOT:PSS)。為了使水性材料PEDOT:PSS能在P3HT:ICBA的親油性表面上有更好的成膜性,我們著手研究P3HT:ICBA電漿處理製程以克服這項問題。然而,經過電漿處理後,功函數約4.2電子伏特的ZnO不再能夠扮演良好的電子傳導層角色。我們以具胺基之特殊不導電高分子PEIE取代ZnO。PEIE能夠將透明導電銦錫氧化物(ITO)的功函數降低至3.6電子伏特,成為能順利接收並傳導電子的下電極。利用此結構,我們所製作的P3HT:ICBA元件經過電漿處理製程後,仍然具有相當高的開路電壓(約0.86伏特),並且達到與傳統順勢結構相同水準的元件效率表現。 然而,以PEIE處理過之ITO作為下電極的元件,必須持續照光一段時間才能達到最佳效率表現。若我們在PEIE與ITO之間先鍍上一層ZnO,則可解決此問題。由此,我們發現,以電漿處理製程製作之P3HT:ICBA元件若要達到良好的效率表現,電子傳導層的功函數扮演相當重要的角色。依據此假設,我們直接將低功函數材料混摻進ZnO中,成功的簡化了電子傳導層的製備。利用此改良過的ZnO電子傳導層,我們成功的製備出高效率電漿處理P3HT:ICBA元件。 此外,我們也嘗試利用常用於串疊型太陽能電池的第二子元件材料,低能隙導電高分子,作為我們反式元件的主動層,測試反式低能隙導電高分子元件的表現。結果發現,低能隙導電高分子在我們的元件結構上仍然能有相當高的效率表現,顯示我們所選用的電子傳導層與電動傳導層是相當合適的。 最後,利用我們於上述實驗中發展出來的技巧,我們嘗試製作反式串疊型高分子太陽能電池。然而,元件的效率表現不如我們預期中的好。經由一些實驗的檢驗,我們推測造成原因是由於串疊型元件的中間連接層不夠具有物理上的保護能力。因此,未來若要再更進一步的提升反式串疊型高分子太陽能電池的元件效率表現,中間連接層的性質的提升將是首要的工作。

並列摘要


In this thesis, we tried to improve the stability and performance of polymer solar cells with the approach of constructing inverted tandem structure polymer solar cells. We used wide band gap polymer, poly(3-hexylthiophene) (P3HT), and novel fullerene derivative, indene-C60 bisadduct (ICBA), as the bulk-heterojunction blend of the front cell, with ZnO and PEDOT:PSS as electron transport layer and hole transport layer, respectively. In order to form a continuous and complete thin film of PEDOT:PSS onto hydrophobic surface of P3HT:ICBA, we focused on the plasma treatment process to overcome this problem. However, after plasma treatment, ZnO, with work function around 4.2 eV, was no longer suitable to serve as efficient electron transport layer for this system and lead to poor efficiency. We replaced ZnO with an amine-based insulating polymer PEIE to modify the work function of ITO to a lower value of 3.6 eV. Using this PEIE modified ITO as cathode, we were able to construct a plasma treated P3HT:ICBA device with Voc of 0.86 V and efficiency comparable to conventional one. However, the optimal performance of this device can only be achieved after prolonged light soaking, which can be solved by inserting a layer of ZnO between ITO and PEIE. We found the work function of electron transport layer is critical to the performance of plasma treated P3HT:ICBA device, and thus we successfully simplified the fabrication process of electron transport layer by directing adding some low work function materials into ZnO film and found the plasma treated P3HT:ICBA device attaining high performance with no need of light soaking. Besides, we demonstrated the low band gap polymers, which are commonly employed as the active layer of rear cell, can also achieve high efficiency using our inverted structure, suggesting excellent carrier transport ability of the electron transport layer and hole transport layer. Finally, using the techniques we learned from the above experiments, we fabricated inverted tandem polymer solar cells. However, the efficiency was not as good as we expected due to the poor physical property of our interconnection layer. Therefore, further improvement of interconnection layer is highly recommended to achieve inverted tandem polymer solar cells with promising effieincy.

參考文獻


(43) Dou, L.; Chang, W. H.; Gao, J.; Chen, C. C.; You, J.; Yang, Y. Adv. Mater. 2013, 25, 825.
(62) Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Nature Photonics 2012, 6, 180.
(25) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Materials 2005, 4, 864.
(39) Chou, C. H.; Kwan, W. L.; Hong, Z.; Chen, L. M.; Yang, Y. Adv. Mater. 2011, 23, 1282.
(54) Chen, H. Y.; Wu, J. L.; Chen, C. T.; Chen, C. T. Chem Commun (Camb) 2012, 48, 1012.

延伸閱讀