透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

利用電漿製程製備紙為基底之微流道裝置

Fabrication of Microfluidic Paper-based Analytical Devices Using Plasma Processes

指導教授 : 徐振哲

摘要


本研究為利用電漿製程製備以紙為基底之微流道裝置,共提出兩種可行的電漿製程:「單一步驟之氟碳電漿聚合反應」,以及「以電池驅動、可攜式、可撓曲之常壓空氣微電漿蝕刻反應」。第一部分,我們利用單一步驟之氟碳電漿進行聚合反應,其優點包括反應為乾式氣相、快速且解析度良好。藉由FTIR與XPS分析顯示,此製程能於濾紙表面鍍上一疏水性屏障 (氟碳薄膜) 的同時,使紙質微流道和偵測區域的主要化學性質及表面元素鍵結均能維持如未處理的濾紙一般。接著,我們發現電漿製程時間對於所製備之微流體為一關鍵影響因素,當鍍膜時間充足 (例如,180秒),樣品溶液能被完整地侷限在微流體流道內,且在此製程條件下,僅需要4.5 μL之溶液便能完整潤濕一寬度為800 μm之微流道裝置。最後,我們利用亞硝酸鹽檢定顯示此製備方法之可行性。 第二部分,我們提出使用一可攜式微電漿產生裝置 (microplasma generation device, MGD),在常壓下產生空氣電漿進行蝕刻反應以製備紙基微流體。藉由引入製備印刷電路板之碳粉熱轉印法 (toner transfer-based),一輕薄且具可撓性之微電漿產生裝置可於30分鐘內製備完成。此微電漿產生裝置可由一可攜式電源供應器 (重量小於1公斤) 搭配一顆12伏特電池或交流/ 直流轉換器驅動。利用此微電漿產生裝置能進行無遮罩圖案化製程 (maskless patterning),在疏水的紙纖維表面產生微米尺度的親水性圖案,並維持良好的圖案轉移擬真度 (pattern transfer fidelity)。接著,我們利用此微電漿產生裝置製備紙基微流體。在合適的微電漿電極設計之下,能於一分鐘之內、花費小於美金0.05元,製作出一流道寬度500 μm之微流體。最後,我們利用定量比色檢定及繪製檢量線來偵測葡萄糖和亞硝酸鹽,結果顯示葡萄糖和亞硝酸鹽分別於1-50 mM及0.1-5 mM 有線性反應。我們相信此低成本、微小化且可攜式之電漿產生裝置能讓使用者在戶外 (in-field) 以及/或是基於各式需求 (on-demand) 來操作電漿,並應用於各種領域。而以此電漿裝置所製備之微流道裝置可望對生醫分析、環境監控以及食品安全檢驗帶來嶄新發展的可能性。

並列摘要


In this work, we first demonstrated an all-dry, top-down, and one-step rapid process to fabricate paper-based microfluidic devices using fluorocarbon plasma polymerization. This process is able to create fluorocarbon-coated hydrophobic patterns on filter paper substrates while maintaining the trench and detection regions intact and free of contamination after the fabrication process, as confirmed by ATR-FTIR and XPS. We have shown that the processing time is one critical factor that influences the device performance. For the device fabricated with a sufficiently long processing time (180 s), the sample fluid flow can be well confined in the patterned trenches. By testing the device with 800 μm channel width, a sample solution amount as small as 4.5 μL is sufficient to perform the test. NO2− assay is also performed and shows that such a device is capable for biochemical analysis. In the second part of this master thesis, a portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (μPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12V-batteries or AC-DC converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-mm spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate μPADs is demonstrated. With a proper design of the MGD electrode geometry, μPADs with 500 μm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the μPADs by performing quantitative colorimetric assay tests and establish calibration curve for detection of glucose and nitrite. The results show a linear response to glucose assay for 1-50 mM and nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate μPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.

參考文獻


1. P.-K. Kao and C.-C. Hsu, "One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization", Microfluid Nanofluid, 16 (5), 811-818 (2014).
2. "World Urbanization Prospects - The 2011 Revision ", Department of Economic and Social Affairs, Population Division, UN, New York, (2012).
3. X. Li, J. Tian, T. Nguyen and W. Shen, "Paper-Based Microfluidic Devices by Plasma Treatment", Analytical Chemistry, 80 (23), 9131-9134 (2008).
4. X. M. Li, D. Reinhoudt and M. Crego-Calama, "What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces", Chem Soc Rev, 36 (8), 1350-1368 (2007).
5. R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Industrial and Engineering Chemistry, 28, 988-994 (1936).

延伸閱讀