透過您的圖書館登入
IP:3.133.146.143
  • 學位論文

利用量子化學方法建立分子二聚體分子間作用力數據庫與SAPT分析

Quantum Chemistry Calculated Intermolecular Interaction Database and Symmetry-Adapted Perturbation Theory Analysis of Molecular Dimers

指導教授 : 趙聖德

摘要


第一部分為分子間相互作用力數據庫的建立,由於非共價相互作用在化學、生物學和材料科學……等等許多領域都是很重要的研究,在過去幾十年中,新的量子化學方法發展之快速,皆在改善結果的準確度,但作為學術的價值最終都必須與實驗結果比較來確認,理想下所有的經驗模型都是基於實驗數據建立而來,可惜的是,很多情況下,我們所需的參數無法直接從實驗得來,因此有必要建立準確且可用於參數化和驗證經驗模型的數據庫。為了系統性的建立一組以ab initio force field針對非共價相互作用能數據庫,我們選擇以烷、烯、炔(色散能主導)及常見的官能基分子二聚體醇、醛、酸、酮、醯胺(靜電能主導)為計算的對象,使用Gaussian09套裝軟體來模擬和計算二聚體的構型及分子間作用力,經過BSSE(Basis Set Superposition Errors)修正的微擾理論(Møller-Plesset Perturbation Theory,MP2)、偶合簇理論(Coupled Cluster Method)等量子力學理論來計算分子間作用力,其中使用MP2及CCSD(T)方法搭配aug-cc-PVXZ(X=D、T、Q)的基底來計算最佳化構型,另外,與不同基底函數用外插法得到的基底極限值CBS(Complete Basis Set limit)比較,探討基底函數與CBS收斂性的關係。 在建立相互作用能數據庫後,我們使用PSI4軟體中的SAPT(Symmetry-Adapted Perturbation Theory)方法分解出靜電能、誘導能、交換能與色散能,以分析分子間作用力的排斥力及吸引力對分子二聚體的穩定性影響。了解分子間作用力的組成後,我們希望能在比SAPT分析更仔細一步探討這四項能量個別是由分子中哪些團基的相互作用得來,我們將這些團基的相互作用力稱作分子片段團基相互作用力(Molecular segment interaction),由每一類分子從碳數小的分子出發,期許能找到構成相互作用力的規則,並能應用於預估更大分子的相互作用能。

並列摘要


The first topic of this research is quantum chemistry calculated intermolecular interaction database. Due to the noncovalent interactions are importance in many areas of chemistry,biology,and material science. In the past decade, we have seen a great acceleration in the development of new quantum chemical methods, those new computational techniques that potentially improve the accuracy of result. As the value of all scientific models must ultimately be determined by comparison with experimental observations, ot would be ideal if the empirical models were based on experimental data. Unfortunately, in many cases, the computed quantity cannot be isolated in an experiment, and direct comparison is thus impossible. In such cases, it is necessary to establish a set of very accurate, well-characterized computational data that can be used to parametrize and validate empirical models. In order to create an ab initio force field database of benchmark interaction energies for noncovalent interactions systematically. The data set consists of 30 complexes dimers. The dimers we chosen so that they represent the motifs and functional groups most commonly, contain alkane, alkene, alkyne(dispersion dominated), alcohol, aldehyde, ketone, acid and amide complexs.We have calculated the intermolecular interaction energy of the dimers with second-order Møller-Plesset perturbation theory(MP2), and coupled cluster(CC) method, and the correction of the basis-set superposition error(BSSE) has been included. In the structure optimization and interaction energy calculations of dimers, we employed MP2 method with Dunning’s correlation consistent basis sets[cc-pVXZ (X=D,T,Q)and aug-cc-pVXZ, (X=D,T,Q)]. In addition, single-point coupled cluster with single and double and perturbative triple excitation (CCSD(T)) calculations were carried out to calibrate the MP2 interaction energy. On the other hand, the complete basis set limit(CBS) can be obtained by extrapolation of sevel basis-set were carried out to calibrate the CCSD(T) interaction energy. The relationship between the basis-set and CBS convergence is discussed. After the interaction energy database construction is completed, PSI4 software was utilized to apply SAPT method to decompose the intermolecular interaction into four parts, as electrostatic energy, induction energy, dispersion energy, exchange energy, to analyze the repulsion and attraction effect on stability of molecular dimer. Not only to obtain the composition of intermolecular forces, but we also wondering more detailed than the SAPT analysis to explore the four composition are interaction from which group of molecular dimer.

參考文獻


[57] Parsegian, V. Adrian. Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, (2005).
[14] M. J. Frisch.; G. W. Trucks,; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; J. A. Montgomery, Jr.; T. Vreven; K. N.Kudin; J. C.Burant; J. M. Millam; S. S. Iyengar; J Tomasi.; V. Barone; B. Mennucci; M . Cossi; G. Scalmani; N. Rega; G.A. Petersson; H. Nakatsuji; M. Hada; M. Ehara; K. Toyota.; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; M. Klene; Li, X.; J. E. Knox; H. P. Hratchian; J. B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O.Yazyev; A. J. Austin;R. Cammi; C. Pomelli; J. W. Ochterski; P. Y. Ayala; K.Morokuma;G.A.Voth;P. Salvador; J. J. Dannenberg; V. G.Zakrzewski; S.Dapprich; A. D.Daniels; M. C. Strain; O. Farkas; D. K. Malick; A. D.Rabuck; K. Raghavachari; J. B.Foresman; J. V.Ortiz; Q.Cui; A. G.Baboul;S.Clifford; J .Cioslowski; B. B. Stefanov; G. Liu; A. Liashenko; P. Piskorz; I. Komaromi; R. L. Martin; D. J. Fox; T Keith.; M. A. Al-Laham; C. Y.Peng; A.Nanayakkara; M.Challacombe; P. M. W. Gill; B. Johnson;W. Chen; M. W. Wong; C. Gonzalez; and J. A. Pople. Gaussian 03, RevisionD. 01; Gaussian, Inc.: Wallingford, CT, 2004.
[1] Jurečka, Petr, et al. "Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs." Physical Chemistry Chemical Physics 8.17 (2006)
[2] Takatani, Tait, et al. "Basis set consistent revision of the S22 test set of noncovalent interaction energies." The Journal of chemical physics 132.14 (2010).
[3] Podeszwa, Rafał, Konrad Patkowski, and Krzysztof Szalewicz. "Improved interaction energy benchmarks for dimers of biological relevance." Physical Chemistry Chemical Physics 12.23 (2010).

延伸閱讀