透過您的圖書館登入
IP:18.116.118.198
  • 學位論文

拍撲式微飛行器之製作及其現地升力之量測研究

The Fabrication of the Flapping Micro Aerial Vehicle and Its On-site Measurement of Unsteady Lift

指導教授 : 楊龍杰

摘要


本研究利用微機電系統技術製作拍撲式飛行器之鈦合金機翼骨架與聚對二甲苯(parylene)機翼薄膜,並結合非微機電製程製作之拍撲式傳動機構、機身骨架與尾翼,成為一全機重22gw以下,全機尺寸約15cm之拍撲式飛行器。本微飛行器放置於風洞內進行升力量測,就不同風速、拍撲頻率、攻角及機翼形狀等進行討論。 本研究另使用聚乙烯氟化物(PVDF)壓電薄膜材料,製作新型拍撲式機翼結構,本研究並將新型機翼之壓電輸出訊號與風洞測力計升力訊號,進行比對探討,可於風洞測試中進行現地升力量測(on-site lift measurement)。 本研究最後為微飛行器安裝鋰電池進行無遙控之自由飛行測試,飛行距離已達10~15m,成功驗證本拍撲式微飛行器飛行之可行性。

並列摘要


The research of micro aerial vehicles (MAVs) is a new field, which attracts much attention in the advanced aeronautical area. The flapping wing, proved by many natural flyers, is the most appropriate way of flying objects with size less than 6 inches. However, there is still plenty of room for studying on the unsteady aerodynamic characteristics of flapping wings. The flapping wing, which is light weighted and high strengthened, is composed of a titanium-alloy frame and a parylene skin in this study. Such an integration of fabrication needs the help of MEMS processing. In the wind-tunnel experimental, the signals from a load cell in the wind-tunnel and the PVDF sensors embedded in parylene wings are acquired simultaneously. Both of the lift signals from the PVDF and the load-cell are basically identical with the same flapping frequency and with the similar qualitative behaviors. Finally we integrate Li-battery into our MAV system and perform test fly of the MAV prototype. The longest distance which our MAV system can reach is 10~15m so far.

並列關鍵字

flapping MAV MEMS PVDF

參考文獻


[34] G. B. Lee, A. M. Huang, F. Jiang, C. Grosjean, C. M. Ho and Y. C. Tai, “Sensing and Control of Aerodynamic Separation by MEMS,” The Chinese Journal of Mechanics, Series A, Vol. 16, No. 1, pp. 45-52, 2000.
[2] W. Shyy, M. Berg and D. Ljungqvist, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35, pp. 455-506, 1999.
[3] Norberg UM. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, New York: Springer, 1990.
[4] T. N. Pornsin-sirirak, et al., “Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Sensors and Actuators A: physical, 89, pp. 95-103, 2001.
[5] T. N. Pornsin-sirirak, et al., “Flexible parylene-valved skin for adaptive flow control,” Proceeding of the 15th IEEE MEMS conference, Las Vegas, USA, pp. 101-104, 2004.

被引用紀錄


任治宇(2019)。應用皂膜於拍翼下洗之量測〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2019.00703
柯皓翔(2016)。結合音圈馬達之拍翼機構輕量化〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.01054
李錫軍(2016)。三維拍翼流場模擬之初探〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00255
陳建瑋(2015)。多拍翼編隊飛行節能之地面初測〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2015.01111
洪堃銓(2014)。仿蜂鳥懸停機構套件之設計與製造〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2014.01134

延伸閱讀