透過您的圖書館登入
IP:3.139.86.56
  • 學位論文

動力學控制金奈米粒子與奈米棒的銀殼生長

Kinetic Control of Silver Shell Growths on Gold Nanoparticles and Nanorods

指導教授 : 鄧金培
本文將於2026/09/01開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文主要探討利用動力學控制製備出金銀核殼奈米長方體和金銀核殼奈米雙三角錐;分別以金奈米棒和金奈米啞鈴為模板,並調控溫度和pH值來控制反應時間,控制銀殼的成長而形成殼核奈米粒子。實驗結果顯示;(1) 金奈米啞鈴代替金奈米棒會使反應時間增加約為2倍。(2)在每降低5 ℃後,反應速率約會減為原本的一半。(3)增加氫氧化鈉或碳酸氫鈉的濃度調整pH值。以金奈米啞鈴為核時,利用可見光光譜發現在45 ℃下以碳酸氫鈉催化還原劑可以得到較高的金銀核殼奈米雙三角錐產率。除此之外,在對金奈米球時,以金銀核殼奈米長方體近似的成長溶液條件成長銀殼,再用可見光光譜圖可推測產物為金銀核殼奈米立方體,改變反應中銀原子和金原子的比例可以改變銀殼形狀。

並列摘要


This article mainly discusses the use of kinetic control to prepare gold-silver core-shell nanocubes and gold-silver core-shell nanotriangular pyramids; gold nanorods and gold nanodumbbells are used as templates respectively, the temperature and pH value are adjusted to control the reaction time. To control the growth of the silver shell to form the shell-core nanoparticle appearance. The experimental results show; (1) The substitution of gold nanometer dumbbells with gold nanorods will increase the reaction time by about 2 times. (2) After every 5°C decrease, the reaction rate is reduced to half of the original. (3) Increase the concentration of sodium hydroxide or sodium bicarbonate to adjust the pH value. When gold nanodumbbells are used as the core, the use of ultraviolet spectrogram found that the use of sodium bicarbonate as a catalytic reducing agent at 45 ℃ can obtain a higher yield of gold-silver core-shell nanotriangular pyramids. In addition, when dealing with gold nanospheres, the silver shell is grown in the growth solution conditions similar to the gold-silver core-shell nanocube, and then the ultraviolet spectrogram can be used to infer that the product is a gold-silver core-shell. nanocube, changing the reaction of silver atoms and the ratio of gold atoms can change the shape of the silver shell.

參考文獻


1. Fröhlich, K.; Hojati-Talemi, P.; Bishop, M.; Zuber, K.; Murphy, P.; Evans, D. ACS Appl. Mater. Interfaces 2013, 5, 3937–3942.
2. Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M.; Jeong, J.; Lim, E.-K.; Jung, J.; Kang, T.; Kim, B. ACS Appl. Mater. Interfaces 2019, 11, 18960–18967.
3. Kelly, K.; Coronado, E.; Zhao, L.; Schatz, G. J. Phys. Chem. B 2003, 107, 668–677.
4. You, S.-M.; Luo, K.; Jung, J.-Y.; Jeong, K.-B.; Lee, E.-S.; Oh, M.-H.; Kim, Y.-R. ACS Appl. Mater. Interfaces 2020, 12, 18292–18300.
5. Hsieh, K.; Chen, H.; Wan, D.; Shieh, J. J. Phys. Chem. C 2008, 112, 11673–11678.

延伸閱讀