透過您的圖書館登入
IP:3.142.174.55
  • 學位論文

含吡啶羧酸基之混金屬配位聚合物與釕錯合物之合成、結構分析與物性探討

Synthesis, characterization and physical properties of pyridine carboxylate-containing mixed-metal coordination polymers and ruthenium complexes

指導教授 : 呂光烈 曾添文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部份 含吡啶基與羧酸基之有機配子(3,5-pyridinedicarboxylate)與鑭系金屬(Eu、Gd、Sm)及鈷或鎳離子於室溫下進行自組裝合成,分別得到化合物[{(M)3(Ln)2(C7H5O4N)6(H2O)22}•20.5H2O]n(M = Co,Ln = Eu (1);M = Ni,Ln = Eu (2);M = Co,Ln = Gd (3)及M = Ni,Ln = Sm (4))。結構經元素分析及單晶X光繞射解析鑑定。 單晶繞射解析顯示化合物1-4結構相同,均為單斜晶系。以1為例,其結構以[EuO8]為核心再與[Co(3,5-pdc)2]單元橋鍵組裝,形成特殊網狀高對稱之鯡魚骨狀結構,各層依ABCABC順序交替排列。鈷金屬中心為六配位,共鍵結兩個吡啶基與四個配位水,銪金屬中心為八配位,共鍵結三個羧酸基與五個配位水。在結構所形成的孔洞中填充了20.5個客分子水,另加上22個配位水,每單位晶格中共含有42.5個水分子。在結構中客分子水與骨架間藉氫鍵作用力,在加上層間的π-π堆疊,引導建構單元自組裝形成3d-4f金屬-有機混成延伸狀結構。結構中的渠道內水分子依排列方式不同形成兩種罕見水團簇,其一為由八個水分子構成立方體結構,另一為22個水分子所組成的柱狀團簇,這兩種水團簇呈交替式串成類似竹子節狀的有趣結構。變溫X-ray粉末繞射分析發現結構中的水分子對於結構的穩定扮演重要角色,若將水分子予以抽離,該結構即隨之瓦解,且無法再予回復。本化合物的水分子的數量與特殊排列的結構相當罕見。 第二部份 將phenanthroline於濃硫酸與濃硝酸中予以氧化,形成 1,10-phenanthroline-5,6-dion (以phendione示之),再與p-tolualdehyde在冰醋酸中,迴流合成2-(4-methylphenyl)imidazo[4,5-f][1,10]phenanthroline,最後再氧化甲基成為羧酸基得到2-[4-phenylcarboxy]-1H-imidazol[4,5-f][1,10]phenanthroline (以pcip示之) (1),經由元素分析儀、核磁共振光譜儀及質譜儀鑑定結構。所合成的有機配子,相較於傳統的羧酸基聯吡啶有較強的共振性質,預期可對光敏物的吸光效率作有效的提升。 將新合成的有機配子1分別與Ru(bpy)2Cl2.2H2O及Ru(phen)2Cl2.2H2O迴流反應後,得到新型的釕化合物[Ru(bpy)2(pcip)] (2)或[Ru(phen)2(pcip)] (3),並經元素分析儀、核磁共振光譜儀及質譜儀解析其構造。化合物2與3經紫外-可見光光譜儀與螢光光譜儀測試後發現在216~300 nm範圍內的吸收,為有機配子之間的電荷轉移,而位於456及453 nm波長處,有一個強烈屬於MLCT的吸收峰,為金屬與有機配子之間的電荷轉移。當在456及453 nm的波長處施予激發後,可於發射光譜中分別位在614與604 nm處發現強烈的輻射峰,並以其計算光量子效率(quantum yield),發現化合物2、3的光量子效率分別為0.06、0.04,而標準的[Ru(bpy)3]2+則為0.062。最後利用雷射光來測定其光敏化的生命期(lifetime),得知化合物2、3分別為0.24及0.21μs。

並列摘要


Part 1 Self-assembly of rare-earth metal ions (Eu, Gd, Sm), transition metal ions (Co, Ni) and 3,5-pyridinedicarboxylate leads to the formation of 3d-4f metal-organic frameworks [(M)3(Ln)2(C7H5O4N)6(H2O)22}•20.5H2O]n (M = Co, Ln = Eu (1); M = Ni, Ln = Eu (2); M = Co, Ln = Gd (3) and M = Ni, Ln = Sm (4)). Results of single-crystal X-ray diffraction analysis reveal that compounds 1-4 are isostructural and exist in a monoclinic crystal lattice. The structure of 1 is assembled from two distinct building units with {EuO8} as a node and {Co(3,5-pdc)2} as a linker. The 2D layer adopts a herringbone architecture, which is further stacked via π–π interactions to form a 3D framework. Interestingly, six free and two europium-bounded water molecules aggregated together via hydrogen-bonding interaction to form an octameric water cube, which is further anchored to two cobalt-bounded aqua ligands. In addition, another sixteen free and six europium-bounded water molecules are arranged into a (H2O)22-rodelike clusters. As a consequence, a bomboo-like water pipe consisting of alternating water cubes and (H2O)22-clusters are generated in the porous framework. Part 2 Oxidization of phenanthroline by H2SO4 and HNO3 gave 1,10-phenanthroline-5,6-dione (phendione). Treatment of phendione and p-tolualdehyde in refluxing acetic acid produced a yellow compound 2-(4-methylphenyl)imidazo[4,5-f ][1,10]phenanthroline. Oxidation of the yellow species by H2SO4/HNO3 in the presence of K2Cr2O7 in refluxing conditions afforded 2-[4-phenylcarboxy]-1H-imidazol[4,5-f][1,10]phenanthroline (pcip) (1). Ru(bpy)2Cl2.2H2O or Ru(phen)2Cl2.2H2O reacted with the pcip ligand in a mixture of EtOH and water under refluxing conditions, followed by an ion-exchange with NH4PF6 to afford compounds [Ru(bpy)2(pcip)](PF6)2 (2) and [Ru(phen)2(pcip)](PF6)2 (3), respectively. The UV-visible spectra of 2 and 3 exhibit a broad band between 390 and 500 nm attributed to the spin allowed metal-to-ligand charge-transfer transition. The bands appear red in the region of 216-300 nm are assigned to the

參考文獻


[23] Wu, J. Z.; Ye, B. H.; Wang, L.; Ji, L. N.; Zhou, J. Y.; Li, R. H.; Zhou, Z. Y. J. Chem. Soc., Dalton Trans. 1997, 1395.
[16] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[25] Lu, Y. Y.; Gao, L. H.; Han, M. J.; Wang, K. Z. Eur. J. Inorg. Chem. 2006, 430.
[1] Xu, J.; Churchill, D. G.; Botta, M.; Raymond, K. N. Inorg. Chem. 2004, 43, 5492.
[2] Iijima, S. Nature 1991, 354, 56.

延伸閱讀