透過您的圖書館登入
IP:3.137.174.216
  • 學位論文

表面活性抑制特性對液流鋅顆粒陽極之研究

Study of Flow Zinc Particle Anode for the Characteristics of Surfactant Inhibitors

指導教授 : 黃國修
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


如何適當的抑制液流鋅顆粒自我腐蝕速率,已成為鋅空燃料電池研發的重要議題。本研究主要由目前電動車與燃料電池車產業發展現況探討至液流鋅顆粒在陽極反應過程中對電池整體之特性,鋅顆粒在電解液中並不穩定,容易和電解液反應,造成腐蝕及生成氫氣,以及鋅顆粒表面所產生之氧化鋅未能完全參與電化學反應而導致電池無法發揮到最大性能,在電解液中添加有機抑制劑,抑制氫氣析出阻礙鋅顆粒電化學反應與氧化鋅表面的脫離,目前的研究方法是利用電化學交流阻抗、動態極化曲線測試和電子顯微鏡分析,探討有機抑制劑對於液流鋅顆粒陽極的保護效率之變化情形,分析出鋅顆粒陽極在反應過程中主要的因子。由實驗結果顯示,SDBS 10wt%的保護效率優於PEG600 15wt%和Tween20 5wt%,由於添加抑制劑使鋅顆粒表面積獲得更多的體積能量密度,並由電子顯微鏡觀察到氧化鋅非均勻的形狀與支晶的生長。本實驗最終主要的目標在於了解液流鋅顆粒存在有機活性劑中的表面機制。

並列摘要


How to properly suppress the self corrosion rate of flow zinc particles is an important topic in the research of Zinc-Air Fuel Cell. This study focused on the current industrial development status of electric vehicles and fuel cell vehicles to the flow zinc particles in the anode reaction process. Zinc particles are unstable in the electrolyte, easily reaction with the electrolyte, causing corrosion, generating hydrogen and the zinc oxide generated from the surface of zinc particle unable to participate in the electrochemical reaction. It caused by the battery can’t achieve to the maximum performance. Adding an organic inhibitor in the electrolyte inhibit the hydrogen generate, resist the electrochemical reaction of the zinc particle and shed of the zinc oxide surface. The goal of present research is utilize the variation of protection efficiency of organic inhibitor with immersion time by the methods of long-term monitoring of the electrochemical impedance, scanning electron microscopy analysis as well as the potentiodynamic polarization curves measurements. Analysis zinc particle anode reaction in process of the main factor. The results indicated that the protection efficiency of the SDBS 10wt% is superior to the PEG600 15wt% and Tween 20 5wt%. More volumetric energy density obtained in first discharge step due to more activated zinc surface area. Furthermore, scanning electron microscopy has shown non-homogenous morphology with coarse ZnO growth. Our study is mainly focused on the understanding the mechanism of flow zinc particle in the presence of the organic inhibitor surfactants.

參考文獻


1. U. S. Briefing, International energy outlook 2013, 2013.
5. B. Peng, J. Chen, "Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells," Coordination Chemistry Reviews, vol. 253, 2009, pp. 2805-2813.
9. P. Sapkota, H. Kim, "Zinc–air fuel cell, a potential candidate for alternative energy," Journal of Industrial and Engineering Chemistry, vol. 15, 2009, pp. 445-250.
13. E. Brillas, F. Alcaide and P. L. Cabot, "A Small-Scale Flow Alkaline Fuel Cell For On-Site Production of Hydrogen Peroxide", Electrochimica Acta, Vol. 48, 2002, pp. 331-340.
15. S. Zhu, "Nitrogen-doped Carbon Nanotubes as Air Cathode Catalysts in Zinc-Air Battery," Electrochimica Acta, S0013, 2011, pp. 4686-4711.

延伸閱讀