透過您的圖書館登入
IP:3.144.248.24
  • 學位論文

以微波法製備磷酸鋰鈷正極材料之研究

A Study on the Preparation of Lithium Cobalt Phosphate Cathode Materials by Microwave Synthesis

指導教授 : 蔡德華

摘要


本研究將改善傳統水熱法的缺點,以微波法製備磷酸鋰鈷正極材料。因微波法具有下列特性:(1)反應速率較快 (2)溫和的反應條件 (3)較高的化學純度 (4)使用較低的能量。 實驗中,以氫氧化鋰、氫氧化亞鈷、磷酸為起始物,溶劑為去離子水,在微波系統中進行合成反應。並研究起始物添加比例與不同微波方式、微波功率、微波時間之間的關係,以SEM、XRD、SEM/EDX觀察其表面型態、結晶構造、分析晶格是否缺陷,恆電位電流儀進行電性分析。 根據實驗結果可知,不同微波方式及不同起始物比例在微波條件400W~600W、180℃、38bar,微波時間為40min~140min分別可合成出LiCoPO4正極材料。結果顯示以400W─→230W連續微波、Li:Co:PO4=1.3:1:1、時間120min的結果最好。

關鍵字

微波法 磷酸鋰鈷 正極材料

並列摘要


This project will improve the disadvantage of conventional hydrothermal method, to prepare LiCoPO4 powder by microwave synthesis. We use microwave to prepare because it has several characteristics: (1) faster reaction rate, (2) milder reaction conditions, (3) higher chemical yield, (4) lower energy consumption. Experiment, the source of lithium hydroxide, Cobalt hydroxide, phosphoric acid, using deionized water as solvent that used to conduct reaction in the microwave system and studying the relationship between ratio of the starting materials with different microwave methods , microwave power, time. We explore morphology, the crystalline phases, analysis of lattice defects and electrical analysis by SEM, XRD, SEM/EDX and Potentiostat Autolab PGSTAT 30. According to the experimentd reaults, the ratio of starting materials and different microwave methods in the microwave conditions 600W~ 400W, 180℃, 38bar, microwave time were 40min ~ 140min respectively, synthesized LiCoPO4 cathode material, the results showed that 400W→230W continuous microwave Li:Co:PO4 = 1.3:1:1, the time was 120min best.

參考文獻


呂東霖,以不同有機酸為碳源製備 LiFePO4/C 複合鋰離子電池陰極材料,碩士論文,國立中央大學化學工程與材料工程研究所,桃園,2007。
[39] P. Deniard, A. M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel and S. Jobic, "High potential positive materials for lithium-ion batteries: Transition metal phosphates, " Journal of Physics and Chemistry of Solids, 65, (2-3), 229-233, (2004).
[5] S. A. Needham, G. X. Wang, H. K. Liu, V. A. Drozd and R. S. Liu, "Synthesis and electrochemical performance of doped LiCoO2 materials, " Journal of Power Sources, 174, (2), 828-831, (2007).
[6] V. I. Anikeev, "Hydrothermal synthesis of metal oxide nano- and microparticles in supercritical water, " Russian Journal of Physical Chemistry A, 85, (3), 377-382, (2011).
[7] X. L. Zeng, Y. Y. Huang, F. L. Luo, Y. B. He and D. G. Tong, "Synthesis of LiCoO 2 by l-apple acid assisted sol-gel method and its electrochemical behavior in aqueous lithium-ion battery, " Journal of Sol-Gel Science and Technology, 1-8, (2010).

延伸閱讀