透過您的圖書館登入
IP:18.191.171.20
  • 學位論文

利用微波法製備奈米氧化銅之研究

A Study on the Preparation of CuO Nanoparticles by Microwave

指導教授 : 蔡德華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,奈米氧化過渡金屬的奈米氧化物在半導體材料方面開始有了廣泛的應用,像是磁性儲存材料、太陽能的轉換、觸媒等等。而其中奈米氧化銅因為擁有較高臨界溫度的特性而開始受到矚目,CuO不僅擁有較窄的價帶;也時常被應用在光電導及光熱材料上。微波是屬於電磁波的一種,它包含了電場和磁場二部分,可用來加熱金屬、液體、或是固體,而最近幾年才開始廣泛應用於奈米粒子的製備。 本研究使用微波加熱法製備奈米氧化銅。在不同濃度的NaOH中加入適量濃度的CuAc2或是CuCl2之後,再加入少量的PEG 20000使得產物顆粒不會發生團聚的現象,最後再放入微波加熱系統中加熱反應,生成氧化銅。 實驗中,我們控制不同的反應物濃度、不同的分散劑添加量、不同的加熱時間及加熱功率來生成奈米氧化銅,完成後使用DLS粒徑分析測量產物顆粒大小,並根據實驗結果推測生成奈米氧化銅之最佳條件。實驗後發現,在NaOH及CuAc2濃度分別為0.4M、0.3M與NaOH及CuCl2濃度分別為0.5M、0.1M;PEG分散劑添加量為0.1g;微波加熱時間及加熱功率各為10小時及100瓦特時,會產生最小平均粒徑,大約為190nm。最後再使用SEM及XRD觀察表面及成分。

並列摘要


In recent years, nanoparticles of transition metal oxides become an important class of semiconductors, which have applications in magnetic storage media, solar energy transformation and catalysis, etc… Among the oxides of transition metals, CuO nanopaticles has attracted much attention because it is have higher-TC. CuO is a semiconducting compound with a narrow band gap and used for photoconductive and photothermal applications. Microwaves are electromagnetic waves containing electric and magnetic field components. It is well known that the interaction of dielectric materials, liquids or solids. But the applications of microwave in the preparation of nanoparticles have been reported until recent years. In this research uses microwave heating method to prepare CuO nanoparticles. Join CuAc2 or CuCl2 of right amount concentration in NaOH of different concentration, then added a small amount of PEG 20000 to make sure the particles not agglomerated. Final put it into the microwave heating system for producing the CuO nanoparticles. In the experiment, we produce the nanoparticles by control different concentration of reactant, different adding amount of dispersant, different heating time and power of heating, use DLS to measure the size of particles. And infer the best condition that produces CuO nanoparticles by the experimental result. After the experiment , we can find that when NaOH and CuAc2 concentration are 0.4M and 0.3M respectively; NaOH and CuCl2 thickness are 0.5M and 0.1M respectively; The adding amount of PEG dispersant is 0.1g; Microwave is heated time and power is 10 hours and 100W will produce the minimum average particle size, it is probably 190nm. Use SEM and XRD to observe the surface and composition afterwards.

參考文獻


[55]林全雯,「微波法製備硫化鎘奈米微粒及電噴霧法製備硫化鎘薄膜及光電性質之研究」,碩士論文,國立成功大學化學工程研究所,台南市,2005。
[21]K. Borgohain, J.B. Singh, M.V. R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B., 2000, 61, 11093.
[24]W. Wang, Z.Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, Appl. Phys. A., 2003, 76, 417.
[9]W.M. Shaheen, A.A. Ali, Int. J. Ion. Mater., 2001, 3, 1073.
[10]A.O. Musa, T. Akomolafe, M.J. Carter, Solar Energy Mater. Sol. Cells., 1998, 51, 305.

被引用紀錄


洪崇逸(2012)。以溶膠凝膠法製備鋰離子電池LiNi0.5Mn0.5O2正極材料〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00451
劉兆芳(2010)。利用微波法製備二氧化錳之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0508201014472800
劉依帆(2011)。以微波溶劑熱法製備LiFePO4正極材料之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2607201121500800
李承澔(2012)。以微波法製備氧化鎳中空微球之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1607201215104700

延伸閱讀