透過您的圖書館登入
IP:52.14.221.113
  • 學位論文

稀土資源回收技術之環境衝擊與碳足跡評估-以螢光粉回收釔、銪為例

Environmental Impact and Carbon Footprint Assessment of Rare Earth Recycling Technologies - A Case Study of Recycling Yttrium and Europium From Phosphor

指導教授 : 胡憲倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


稀土元素是高科技產業的關鍵原料,其開採所產生的環境問題也一直是全球環保議題之焦點,例如造成嚴重的水土流失、表面植被破壞以及洗礦時廢水的產生等。其實若干稀土元素並不稀少,只是其之開採集中在少數的幾個國家中(例如中國、美國等),並且常常會被利用作為貿易與經濟性懲罰的手段。因此,近年稀土議題也引起全球高度關注,許多工業大國已將稀土金屬視為重要戰略資源,其重要性不言而喻。生命週期評估是環境保護的基礎,可有效了解在生命週期各階段內對環境影響的熱點,對永續發展有長遠的幫助。有鑑於稀土資源於全球之重要性以及降低稀土元素在生命週期中對環境圈所產生的危害,稀土資源物質流佈調查及循環再生利用之技術需求更與日遽增。本研究針對從螢光粉中回收稀土元素釔及鑭的技術進行環境衝擊及碳足跡評估,採用一次回收流程可平均回收釔及銪的萃取量做為其功能單位,並使用兩套生命週期評估的軟體SimaPro和Umberto,分別針對酸萃取法在製程中不同酸性溶液(H2SO4、HCl)及不同溫度條件(60℃、90℃)下進行碳足跡評估,再與溶劑萃取法進行比較。其結果顯示原料階段的排放為58 kgCO2-eq,製造階段則分成4個結果做討論,分別為H2SO4、60℃為9.76 kgCO2-eq;H2SO4、90℃為10 kgCO2-eq;在HCl、60℃為9.26 kgCO2-eq及HCl、90℃為9.54 kgCO2-eq。溶劑萃取法在原料階段的排放為69 kgCO2-eq,製造階段則為10.6 kgCO2-eq。比較兩種萃取方法時,假設兩種功能單位的情境進行碳足跡的討論,分別為投入的相同的螢光粉使用量及相同的萃取濃度作為功能單位,其結果顯示溶劑萃取法的碳排放量高於酸萃取法,但其萃取效率也優於酸萃取法,再針對其排放熱點給予後續回收技術改善的建議。研究結果可做為擬定稀土之生命週期管理的參考依據,並針對國內稀土管理策略與管制措施上給予適當的建議並確立永續性資源之循環與利用。

並列摘要


Rare earth elements are the key raw materials of high-tech industries; however, their mining have long been creating lots of environmental impacts ,such as soil erosion, destruction of vegetation and water pollution, etc. Due to the global shortage of rare earth resources, it will be difficult to sustain their long-term supply. Thus, in recent years, rare earth and their supply has become hot issue. Many industrialzed countries have regarded rare earth resources as important strategic resources for economic growth. In light of the facts mentioned above, this study intends to explore the environmental impact and carbon footprints of recovering Yttrium and Europium from phosphor. Two extraction recovery methods, namely acid extraction and solvent extraction, were selected for analysis and comparison. Two LCA commercial softwares were applied and two functional units, same ammounts of phosphor and specific recovery concentrations of Yttrium and Europium, were used. Regarding the acid extraction method, two acidic solutions (H2SO4 and HCl) in two different temperatures (60 ℃, 90 ℃) were used, which were compared with solvent extraction method. Results of acid extracton method showed that the carbon emissions of raw material stage is 58 kgCO2-eq, and the carbon emissions of manufacturing stage are 9.76 kgCO2-eq, 10 kgCO2-eq; 9.26 kgCO2-eq and 9.54 kgCO2-eq for H2SO4, 60 ℃, H2SO4, 90 ℃, HCl, 60 ℃ and HCl, 90 ℃, respectively. For solvent extraction method, the carbon emissions of raw material stage and manufacturing stage are 69 kgCO2-eq and 10.6 kgCO2-eq, respectively. After comparing the carbon emissions of two extraction methods, it is found that although acid extraction method has lower carbon footprints, however, solvent extraction method has much higher extraction efficiency. These results may be used for crafting strategies in implementing life cycle management of rare earth resources for realizing a sustainable use of rare earth resources.

參考文獻


蔡青純,稀土元素物質流佈與資源化潛力分析之研究-廢照明光源為例,碩士論文,國立臺北科技大學,台北,2013。
陳祺富,旅館業住宿服務之碳足跡評估-以某國際觀光旅館為例,碩士論文,國立臺北科技大學,台北,2013。
顏晟容,台灣地區汞之物質流分析及其衝擊評估,碩士論文,國立台北科技大學環境工程與管理所,台北,2011。
楊士瑩,染料敏化太陽能電池生命週期之碳足跡及水足跡評估,碩士論文,國立臺北科技大學,台北,2012。
經濟部工業局,ISO14000 系列-生命週期評估技術應用手冊,台北,2001。

被引用紀錄


黃鉉喨(2017)。廢棄物管理之生命週期評估-以在BoP市場販售二手手機為例〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201714432840

延伸閱讀