透過您的圖書館登入
IP:3.133.109.211
  • 學位論文

生物燃料電池電極酵素固定化與電池設計之研究

Immobilization of Enzyme on Electrode and Cell Design in Biofuel Cell

指導教授 : 吳和生

摘要


生物燃料電池可將生質燃料(biofuel)轉化成電能的電化學元件,世界上許多國家都將此產業列為未來最具潛力的新興產業之一。發展生物燃料電池具有可減少溫室效應及同時提高能源自主性之優點,酵素燃料電池為生物燃料電池的一種。酵素燃料電池(enzyme-based fuel cells)中之葡萄糖氧化酵素 (glucose oxidase) 和漆氧化酵素 (laccase) 藉由活性碳紙(carbon paper)固定,應用在酵素型生物燃料電池系統電極上,分別作為陽極(anode)和陰極(cathode)之用,在兩端皆加入聚吡咯(polypyrrole)導電高分子(conductive polymer)增加導電度。在磷酸緩衝液(phosphate buffer solution, PBS)中,介電質(mediator)和酵素以包埋法(entrapping type)進行混合。用Nafion質子交換薄膜(Nafion membrane212)分隔兩半電池,而電池的功率表現則是以變電壓的方式來量測,溶液中的葡萄糖濃度為10 mM。將鐵氰化鉀 (potassium hexacyanoferrate III) 添加到陽極,而將2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, ABTS加入陰極,可以使得電池的效能有所提升。 本研究自行設計電池本體,壓克力外觀體積為(40 mm #westeur024# 50 mm #westeur024# 50 mm),將內部槽體體積(20 mm #westeur024# 30 mm #westeur024# 40 mm)挖空,以橡皮墊圈固定質子交換膜Nafion 212並防止滲漏,就完成電池組裝。此外,將通氣膠帶覆蓋在碳紙電極上,經通氣膠帶(micropore tape)包覆可延長電池壽命(lifetimes)可以使電池的使用壽命大幅增進。從時間-電位圖可知,連續測試20天,未經通氣膠帶包覆的電池的效能為0.24 V及功率密度為57.6 μW/cm2的功率輸出;有通氣膠帶包覆電極的結果,電池的效能為0.57 V及功率密度為324.9 μW/cm2的功率輸出,因此經覆蓋通氣膠帶之電極,在酵素固定化技術有顯著結果,可提供未來生物酵素燃料電池的應用。

並列摘要


Biofuel cells convert biofuel into electrical energy, which are electrochemical devices. In the world, many countries plan to develop this technology as one of the most promising emerging industries for the future. Developments of biofuel cells demonstrate the advantages on reduction of greenhouse gas emissions as well as increasing energy security. Enzyme-based fuel cell is one kind of the biofuel cells. Glucose oxidase and laccase are immobilized onto carbon papers as anode and cathode, electrode respectively in the enzyme-based fuel cells system, which mixed with conductive polymer (polypyrrole) for increasing conductivity. Mediator and enzyme were mixed in phosphate buffer solution for entrapping type. A Nafion membrane212 was inserted to separate both half cells. The power density with respect to different operating voltages was obtained at glucose concentration of 10 mM. Addition of redox mediators, potassium hexacyanoferrate III to the anode cell and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline- 6-su lfonic acid) to the cathode cell was investigated in enhancing power output of the comprised biofuel cell. The cell was made from acrylic material (40 mm #westeur024# 50 mm #westeur024# 50 mm). Work volume geometry is 20 mm #westeur024# 30 mm #westeur024# 40 mm. Use rubber gasket to fixed Nafion membrane212, and then assembled the cell. In addition, micropore tape covered on the electrode was achieved a long-term operation system. According to the result of the relationship of time-potential, without micropore tape, the voltage could be achieved at 0.24 V, with a maximum power density of approximatly 57.6 μW/cm2. In the case of micropore tape, the cell potential achieved upto 0.57 V, with a maximum power density of approximatly 324.9 μW/cm2, for 20 days. Therefore, using the micropore tape to entrap the enzyme in the electrode will enhance the application of biofuel cell.

參考文獻


蘇朝墩,品質工程,中華民國品質學會, 2002
Adams, R. N., “Electrochemistry at solid electrodes", 143~149 , 1969
Allen, R. M., H. P. Bennetto, Microbial fuel-cells: electricity production from carbohydrates, Appl. Biochem Biotech, 27-40, 1993
Angeli, A., “The electrochemistry of conducting polymers,” Gazzetta Chimica Italiana, 279-285, 1916
Ban, K., T. Ueki, Y. Tamada, T. Saito, S. Imabayashi, M. Watanabe, Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide)spacers, Electrochem Commun. 649-653, 2001

延伸閱讀