透過您的圖書館登入
IP:3.135.213.214
  • 學位論文

含溴之鈣鈦礦太陽能電池製作以及與矽晶太陽能電池作為二接點串聯電池之研究

Bromine-Doped Perovskite Solar Cell and Stacking on Silicon Crystalline Solar Cell as Two-Terminal Tandem Device

指導教授 : 王立康
本文將於2026/10/24開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文第一部分主要研究摻雜溴之鈣鈦礦太陽能電池的製備及優化,鈣鈦礦吸收層使用低成本的一步法溶液塗佈來進行製程,比較不同碘溴比例的鈣鈦礦太陽能電池其中的吸收特性與電性的差異,得到最佳化的比例為MAPb(I0.8Br0.2)3,再進一步配置不同吸收層濃度使厚度改變以增加光的吸收;以及優化電洞傳輸層NiOx退火溫度與濃度等參數,最後調整電子傳輸層PCBM的厚度使電池效率達到最佳化。 第二部分為使用離子佈植法進行雜質擴散和快速熱退火來製作矽晶太陽能電池,背面為電子束蒸鍍全面鋁作為電極,再將已經製備好的高能隙鈣鈦礦太陽能電池直接塗佈於已拋光的矽晶正面進行堆疊,最後熱蒸鍍銀電極後完成串聯電池並進行優劣分析。

關鍵字

鈣鈦礦 矽晶 太陽能電池

並列摘要


The first part of this thesis mainly discusses the preparation and optimization of bromine-doped perovskite solar cells. To deposit the absorption layer , we use a low-cost one-step solution coating process and compare the absorption spectrum and electrical characteristics of perovskite solar cells with different iodide-to-bromine ratios. The chemical formula with an optimized ratio is found to be MAPb(I0.8Br0.2)3, and then we further make different absorption layer concentrations to change the thickness of the perovskite to increase light harvest;and then optimize the hole transport layer NiOx parameters of annealing temperature and concentration. Finally, we adjust the thickness of the electron transport layer PCBM to optimize the cell’s efficiency. The second part is to use an ion implantation method for impurity diffusion , and then rapid thermal annealing to make silicon crystalline solar cells. The back of Si is all surface Al deposited by electron beam evaporation to be the electrode. Then the prepared high band gap perovskite solar cell is directly coated on the front side of the silicon crystalline solar cell, and the silver electrode is thermally evaporated to complete the tandem cell.

並列關鍵字

Perovskite Silicon solar cell

參考文獻


[3] K. Yoshikawa and H. Kawasaki, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, ” Nature energy 2, 17032, 2017. https://doi.org/10.1038/nenergy.2017.32
[1] O. W. K. Avellino, F. Mwarania, and A. H. A. Wahab, “Uganda solar energy utilization : current status and future trends,” International Journal of Scientific and Research Publications, vol 8, issue 3, March 2018.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, vol 25, pp. 676-677, Jan, 1954.
[4] O. Schultzy, S. W. Glunz, and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency, ” Fraunhofer institute for solar energy systems, D-79110 Freiburg, Germany
[5] T. Kumagai and H. Matsubara, “Thin‐film microcrystalline silicon solar cells: 11.9% efficiency and beyond,” Applied Physics Express, vol 11, 2018.

延伸閱讀