透過您的圖書館登入
IP:34.204.52.16
  • 學位論文

碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究

Preparation and characterization of carbon nanotubes/graphene/epoxy composite

指導教授 : 馬振基
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在利用奈米石墨烯片添加至環氧樹脂基材中作為補強材料,由於奈米石墨烯片在基材中容易有聚集問題,故本研究利用碳奈米管的添加,改善奈米石墨烯片之分散性,並利用一維碳奈米管及二維奈米石墨烯片之協成效果達到最佳的補強結構,大幅提高環氧樹脂複材之機械性質。 本研究主要分成三部分: 第一部份主要研究碳奈米管的表面處理,以自由基反應法來達到改質效果,其分為兩步驟: 1. 利用自由基反應法改質碳奈米管,將含有環氧基的glycidylmethacrylate(GMA)接枝聚合在碳奈米管上,此方法可避免如利用氧化法對碳管本身的破壞,使碳奈米管表面仍然保持其完整石墨結構。 2. 接枝含雙胺的單體(Jeffamine® Poly(oxyproplene), POP-400),探討POP-400對於碳奈米管所形成的立體結構對分散性及反應性的影響,並命名改質後之碳奈米管為GD400-MWCNTs。 藉由拉曼光譜(Raman Spectrum)、高解析電子能譜儀(XPS)、紅外線光譜儀(FT-IR) 進行定性分析,並以TGA作定量分析。 由Raman光譜的分析可知未改質的碳奈米管有最低的D band/G band積分面積相對比值(1.08),因其結構性最為完整,而經過自由基改質碳奈米管其碳奈米管表面的石墨結構會由於自由基反應而造成部份開環,故使得D band/G band積分面積上升至1.16,但無明顯大幅上升表示自由基改質除了可以有效改質碳奈米管,更可以保持碳奈米管結構之完整性。利用XPS碳譜圖分析改質後的Jeffamine® POP-400-g-GMA-MWCNTs (GD400-MWCNTs) 比改質前的碳奈米管多出四個訊號峰,分別在285.60 eV處有C-NH2的特徵峰,286.65 eV處有C-O-C的特徵峰,286.86 eV處有C-OH的特徵峰,288.00 eV處有O-C=O的特徵峰,證明POP-400已成功接枝於碳奈米管表面上。 第二部份是將奈米石墨烯片進行氧化還原反應以降低其層數,以達到增加其表面積進而提昇複材之機械性質,藉由拉曼光譜、高解析電子能譜儀、X-射線繞射儀進行定性分析,並以原子力顯微鏡、SEM進行形態學觀察。 根據Hummers method,Graphite Nano Sheet(GNS)經由氧化脫層後形成Graphene Oxide(GO)。Graphene Oxide上含有大量含氧官能基可以提供良好的分散性及化學活性點。而從XRD可觀察到其002結晶面的層間距離從Graphite Nano Sheet的3.4 Å,撐開至Graphene Oxide(GO)的7.3 Å,然而其石墨結構卻有不完整。為了回復材料之石墨結構完整性,利用化學還原法將Graphene Oxide還原為Graphene Sheet,由Raman及XPS可以分析材料的石墨結構比例及其表面的元素成份。從Raman及XPS之分析結果證實經由化學還原法可以將Graphene Oxide 還原為Graphene Sheet(GS)。從FE-SEM可以觀察到GNS、GO及GS的型態結構,經過還原反應後之GS與傳統材料的碳黑及石墨不同,呈現皺摺且多孔結構。本研究主要是利用GNS、GO及GS添加至環氧樹脂基材當中,並利用碳奈米管提高分散性,以提昇高分子複合材料之機械性質。 第三部分則是將Pristine-MWCNTs、GD400-MWCNTs及GNS、GO、GS進行混摻並加至環氧樹脂基材當中,並且探討其對於機械性質上的影響,研究結果如下: 1. 將含0.5 phr、1.0 phr及2.0 phr 之Pristine-MWCNTs/GNS與epoxy進行混掺並製備Pristine-MWCNTs/GNS/Epoxy複合材料,發現添加低含量0.5 phr之Pristine-MWCNTs時可得最佳機械性質,因為Pristine-MWCNTs/GNS含量過高時會產生聚集現象,造成應立集中點無法有效傳遞應力,使得機械性質呈現下降的趨勢。擁有Pristine-MWCNTs/GNS之混成比例為10/90 wt%(wt %),拉伸模數由2 phr之Pristine-MWCNTs/GNS/Epoxy複合材料的2920 MPa提昇至0.5 phr的3381 MPa。 2. Pristine-MWCNTs/GNS/Epoxy複合材料在Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)下其拉伸模數、拉伸強度及最大伸長量皆較兩成份之Pristine-MWCNTs/Epoxy複合材料及GNS/Epoxy複合材料佳,由Pristine-MWCNTs/Epoxy及GNS/Epoxy的3087 MPa、51.99 MPa、3%及3361 MPa、51.08 MPa、2.9%提昇至Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)的3381 MPa、55.02 MPa、3.5%。這是由於添加少量碳奈米管至材料中,碳奈米管能夠提供立體障礙以減少奈米石墨烯片堆疊之現象,使得奈米石墨烯片聚集的現象得以改善,故能提昇其複材之機械性質。 3. 將Pristine-MWCNTs/GNS/Epoxy複合材料及GD400-MWCNTs /GNS/Epoxy複合材料兩系統進行拉伸測試,研究發現碳奈米管經過自由基改質後,其接枝上的POP-400含有胺基可與環氧樹脂的環氧基進行開環反應,使得GD400- MWCNTs與基材間相容性及黏著性問題改善,且GD400-MWCNTs與奈米石墨烯片之間的作用力使得GD400- MWCNTs附著於奈米石墨烯片表面上,故一併將奈米石墨烯片嵌入至基材當中,增加奈米石墨烯片及基材間之相容性及黏著性,以提昇其拉伸強度及最大伸長量。但含0.5 phr之Pristine-MWCNTs/GNS/Epoxy分散性較佳,GD400- MWCNTs所接枝的POP-400影響交聯度之效果勝過其分散效果,故拉伸模數無法提昇。 4. 將GD400-MWCNTs/GNS/Epoxy複合材料、GD400-MWCNTs /GO/Epoxy複合材料及GD400-MWCNTs/GS/Epoxy複合材料三個系統進行比較,發現GO材料由於氧化脫層效果,造成層數減少且帶有含氧官能基,故能提昇拉伸強度(由GD400-MWCNTs/GNS/Epoxy的61.52 MPa提昇至GD400- MWCNTs/GS/Epoxy的67.59 MPa)及最大伸長量(由GD400-MWCNTs/GNS/Epoxy的3.9 %提昇至GD400-MWCNTs /GS/Epoxy的4 %),但在硬化過程因升溫造成含氧官能基部份氣化而造成材料有孔洞之產生,造成拉伸模數無法提昇現象。GS之材料其層數經氧化還原後較GNS少,且有材料有皺摺型態,能與高分子基材形成交互連鎖 (interlocking),使應力可以有效傳遞以改善機械性質,但僅添加GS時當其添加量較高會造成分散性降低之情形故無法提昇其拉伸模數,而在於GD400-MWCNTs/GS之混成比例為10/90 wt%時,由於GD400-MWCNTs之少量添加能改善GS於Epoxy中之分散性以達到最佳機械性質效果。 熱機械性質方面分為三個參數討論,分別是玻璃轉移溫度(Tg)、玻璃態的熱膨脹係數(CTEα1 )及橡膠態的熱膨脹係數(CTEα2 ): 1. Pristine-MWCNTs/GNS/Epoxy複合材料在Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)下可得最高的玻璃轉移溫度及最低玻璃態的熱膨脹係數及橡膠態的熱膨脹係數,分別為52℃, 81 ppm/℃及250 ppm/℃。這是由於添加少量碳奈米管至材料中,碳奈米管能夠提供立體障礙以減少奈米石墨烯片堆疊之現象,使得奈米石墨烯片與高分子間的接觸面積上升,故能提昇其複材之機械性質。 2. 將GD400-MWCNTs/GNS/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GNS之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為52.69℃, 80.22 ppm/℃及236.2 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出22.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低11.06 % 及9.88 %;由於改質的碳管帶有含氨官能基,故能提高與基材之間之界面相容性,提昇GD400-MWCNTs/GNS/Epoxy複合材料的熱穩定性。 3. 將GD400-MWCNTs/GO/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GO之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為54.41℃, 79.36 ppm/℃及246.5 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出26.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低12.02 % 及5.95 %;由於經過氧化反應後的GO帶有含氧官能基且層數變少,故能提昇其熱性質,但由於經過加熱硬化過程GO被部份還原,其帶有之含氧官能基部份被氣化造成複材之孔洞形成,故橡膠態的熱膨脹係數比GD400-MWCNTs /GNS/Epoxy複合材料系統高。 4. 將GD400-MWCNTs/GS/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GS之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為56.9℃, 70.13 ppm/℃及225.5 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出26.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低22.25% 及13.96 %;還原後之GS具有皺摺型態,能夠與環氧樹脂的高分子鏈更緊密結合,界面作用力因此提高許多,故能夠大幅提昇GD400-MWCNTs/GS/Epoxy複合材料系統的熱穩定性。 綜合以上結果可知,GD400-MWCNTs/GNS/Epoxy複合材料能達到最佳機械性質,其拉伸模數、拉伸強度及最大伸長量分別為3631 MPa,9.32 MPa及3.9 %,相對於純環氧樹脂的2642 MPa 47.65 MPa 2.6 %分別提昇 37.22 %,,45.45 %及 50 %。 本研究利用改質後之碳奈米管可幫助奈米石墨烯片的分散,使一維碳奈米管及二維奈米石墨烯片之協成效果達到最佳的補強結構,將奈米碳材於基材中能夠發揮最佳補強效果,大幅改善其機械性質。

並列摘要


The objectives of this research are the preparation and characterization of Multi-Walled Carbon NanoTubes (MWCNTs)/Graphite Nanosheet (GNS) /Epoxy hybrid composites. There are three parts in this study. The first part of this research is the surface treatment of multi-walled carbon nanotubes (MWCNTs) by free radical reaction method, which is divided into two steps: 1. At first, the functionalized MWCNTs were prepared via free radical reaction with glycidylmethacrylate(GMA), which contains the epoxy group for polymerization on MWCNTs. 2. After GMA was polymerized on MWCNTs surface, Jeffamine® Jeffamine® Poly(oxyproplene)(POP-400) was grafted on GMA, which was assigned as GD400-MWCNTs. GD400-MWCNTs were analyzed by Raman spectrometer, X-ray photoelectron (XPS), Fourier transform infrared spectrometer (FT-IR) and thermogravimetric analysis (TGA). The morphology of GD400- MWCNTs were observed by Transmission electron microscope (TEM). The ID/IG area ratio of prinstine-MWCNTs and GD400-MWCNTs, are 1.08 and 1.16, respectively. The ID/IG values of GD400-MWCNTs indicate this modification will functionalize MWCNTs with slightly damage on the structure of MWCNTs. The characteristic absorption peaks of GD400-MWCNTs are more than that of prinstine-MWCNTs. There are characteristic peaks appeared, the peak at 285.60 eV corresponded to C-NH2, at 286.65 eV corresponded to C-O-C, on 286.86 eV corresponded to C-OH and at 288.00 eV corresponded to O-C=O, these peaks confirmed MWCNTs were successfully functionalized. The second part of this research is the redox reaction on Graphite Nano Sheet(GNS) that can reduce the number of layers of GNS, and increase their surface area to enhance the mechanical properties of composites. Modified GNS was analyzed by Raman spectrometer, X-ray photoelectron (XPS) and X-ray (XRD). The morphology of Modified GNS was observed by SEM and AFM. The Graphite Nano Sheet was exfoliated to form Graphene Oxide by using a modified Hummers method. The high density of oxygen functionalities on graphene oxide can provide chemical modified potentials and good dispersibility. XRD was used to observe the interlayer distance of graphite 002 plane, which indicated the that d-spacing of exfoliated Graphene Oxide changes from 3.4 Å to 7.3 Å. However, the Graphene Oxide possesses poor physical properties due to poor graphitic structure. In order to restore the graphitic structure of Graphene Oxide(GO), the chemical reduction had been used to reduce the Graphene Oxide(GO). The Raman and XPS were used to investigate the quality of graphitic structure and surface chemical composition of graphene-based materials. The results of Raman and XPS indicate that Graphene Sheet can be reduced effectively by chemical reduction. The FE-SEM was used to observe the surface morphology of GNS, GO and GS. The surfaces of GS exhibit typically crumpled and porous architectures which are different from carbon black and graphite. In this study, GNS, GO and GS were added into polymer matrix to investigate their effect on the mechanical properties of the polymer composites. The third part of this research is the preparation and characterization of the Pristine-MWCNTs/GNS/epoxy, GD400-MWCNTs/GNS/epoxy, GD400-MWCNTs/GO/epoxy and GD400-MWCNTs/GS/epoxy hybrid composites. From the tensile properties study, the following results were obtained: 1. When the Pristine-MWCNTs/GNS/Epoxy hybrid composites were prepared with 0.5 phr, 1.0 phr and 2.0 phr MWCNTs/GNS, it was found the best mechanical properties can be obtained with the lowest MWCNTs/GNS content (0.5 phr).Since the high nano filler content will cause aggregation and reduce its mechanical properties. 2. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the best tensile modulus, tensile strength and elongation, which were 3361 MPa, 51 MPa and 2.9 %, respectively, and exhibit significant improvement comparing with neat epoxy (increase from 2646 MPa, 47.65 MPa and 2.6 %, the enhancement is 27.02 %, 6.93 % and 11.54 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix. 3. The tensile modulus, tensile strength and elongation of GD400- MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% were 3361 MPa, 61.52 MPa and 3.9 %, respectively (the enhancement is 27.04 %, 29.09% and 50% respectively, comparing with those of neat epoxy.) 4. The tensile modulus, tensile strength and elongation of GD400- MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% were 2940 MPa, 67.59 MPa, 4 %, respectively (the enhancement is 11.11%, 41.82% and 53.85% respectively, comparing with those of neat epoxy.) The tensile modulus, tensile strength and elongation of GD400-MWCNTs/ GS /Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% were 3631 MPa, 9.32 MPa, 3.9 %, respectively (the enhancement is 37.22 %, 45.45 % and 50 % respectively, comparing with those of neat epoxy.) From the Glass Transition Temperature(Tg) study, the following results were obtained: 1. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the highest Tg which was 52℃, respectively, and exhibit significant improvement comparing with neat epoxy (increase from 42.99 ℃, the enhancement is 20.96 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix. 2. The Tg of GD400- MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% was 52.69 ℃, respectively (the enhancement is 22.56%, comparing with those of neat epoxy.) 3. The Tg of GD400-MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% was 54.41 ℃, respectively (the enhancement is 26.56. %, respectively, comparing with those of neat epoxy.) The Tg of GD400-MWCNTs/GS/Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% was 56.9℃, respectively (the enhancement is 32.36 %, respectively, comparing with those of neat epoxy.) From the Coefficient of thermal expansion (CTEα1 and CTEα2) study, the following results were obtained: 1. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the lowest CTEα1 and CTEα2, which were 81 ppm/℃and 240 ppm/℃, respectively, and exhibit significant improvement comparing with neat epoxy (decrease from 90.2 ppm/℃ and 262.1 ppm/℃, the enhancement are 10.20 % and 8.43 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix. 2. The CTEα1 and CTEα2 of GD400-MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% were 80.22 ppm/℃ and 236.2 ppm/℃, respectively (the diminution are 11.06 % and 9.88 %, comparing with those of neat epoxy.) 3. The CTEα1 and CTEα2 of GD400-MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% were 79.36 ppm/℃ and 246.5 ppm/℃, respectively (the diminution are 12.02% and 5.95 %, comparing with those of neat epoxy.) The Tg of GD400-MWCNTs/GS/Epoxy hybrid composite in MWCNTs/GS 10/90 wt% were 70.13 ppm/℃ and 225.5 ppm/℃, respectively (he diminution are 22.25 % and 13.96 %, respectively, comparing with those of neat epoxy.) This study demonstrates a unique method to improve the mechanical properties of GNS, GO and GS filled epoxy composites via introducing one dimensional carbon nanotubes. Since long and tortuous MWCNTs can bridge the adjacent GNS, GO and GS and inhibit the face to face aggregation, resulting in a high contact area between 3-D hybrid architecture and polymer matrix. The tensile modulus, tensile strength and elongation of GD400-MWCNTs/ GS /Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% were 3631 MPa, 9.32 MPa, 3.9 %, (the enhancement is 37.22 %, 45.45 %and 50 % respectively, comparing with those of neat epoxy.) Thus, minimizing the stacking effect and reducing aggregation of GNS, GO and GS are the most important issues to realize the potential of graphene-based composites.The 3-D hybrid architectures is a very important concept to improve reinforcing efficiency of graphene-base polymer composites.

並列關鍵字

graphene carbon nanotubes composite

參考文獻


[9] 阮韶銘,國立清華大學化學工程學系論文, 馬振基教授指導, 2008.
[77] 吳至彧,國立清華大學工程與系統科學系碩士論文, 2009.
[2] 楊士億, 國立清華大學化學工程學系論文, 馬振基教授指導, 2009.
[12] 梁麗娜,國立清華大學化學工程學系論文, 馬振基教授指導,2007.
[13] 楊子慧,國立清華大學化學工程學系論文,馬振基教授指導,2007.

被引用紀錄


劉承泰(2013)。參雜成分對於塑膠模造功能零件的影響研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827%2fNFU.2013.00035
林秀貞(2011)。矽氧烷偶合劑修飾石墨烯之分散與應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1808201114082400
蔡運邦(2012)。多壁奈米碳管-纖維強化乙烯基樹脂複合材料之製備及其機械性質之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2002201315150597
楊芷瑀(2015)。具電磁波遮蔽效應之奈米石墨烯/水性聚胺酯奈米複合材料之製備及其特性之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510251092
藍珮瑜(2015)。應用於鋰離子電容器之氮摻雜石墨烯/奈米碳管複合材料之製備與性質研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510251093

延伸閱讀