透過您的圖書館登入
IP:3.144.212.145
  • 學位論文

奈米結構金、矽化鈦與壓電材料合成結構鑑定與其性能研究

Nanostructured Gold, Titanium Silicides and Piezoelectric Materials: Synthesis, Characterization, and Performance

指導教授 : 周立人
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文的核心研究主題主要是構思暨系統地探索以下先進的奈米材料等性能,其中包括:1.金、2.矽化鎳-矽化鈦核殼奈米線與3.具優秀壓電性之氧化鋅與氮化鎵奈米線等。但就一般材料分類而言,上述材料可簡單分為以下兩種物理特性:金屬性與半導體性。根據不同物理屬性的材料則可適用於各種元件上。其中,在金屬性奈米材料研究上,我們主要合成金奈米線與矽化鎳-矽化鈦核殼奈米線,並針對其材料表徵與元件特性,其中包括其磁性、電性與場發射性能進行一系列研究。在成長方面,我們是利用一個嶄新的固-液-固合成方式成長出這些金屬性的奈米線並針對其成長方式進行詳細地討論。其中對於金奈米線在場發射實驗測試中,其表現出相當優異的性能,元件最低的開啟電壓為3 V /μm而最大電流密度則為1.5 mA/cm2。另一方面,矽化鎳-矽化鈦核殼奈米線亦有許多優秀有趣的物性像擁有絕佳的熱穩定性、磁性和極低的電阻。 此外,本論文亦嘗試合成具壓電性之纖鋅礦結構的氧化鋅與氮化鎵奈米線。一般壓電特性起因於材料中電荷載體的傳輸行為,但對於氧化鋅與氮化鎵材料而言,則為具有多重的物理意義指標:皆具有壓電特性且為可發光半導體。因此,我們也深入探討此二奈米線在能源研究上的各種應用,包括不需外接電池則可自體供電的發光二極體元件、混合式可撓曲壓電材料奈米發電機,最後並探討利用人類日常活動而進行壓電發電機的研究。結果皆顯示,具有壓電半導體性的氧化鋅與氮化鎵奈米奈擁有很大的未來研究潛力。本研究成果也成功了解這些壓電材料的基礎科學,並且推測其未來工程上的潛力與應用。 本論文已呈現上述幾項優異的研究成果,並針對不同材料進而探索了多種可能性的應用以下如1.黃金奈米線已顯露可做為優秀的場發射器的潛力,2.矽化鎳-矽化鈦核殼奈米線核殼可作為元件上互聯橋接器或進而作為磁阻電子元件之候選人,3.有著極佳壓電材料特性的氧化鋅和氮化鎵奈米材料,盼能輔以未來的微奈米電子技術,可將人類或動物在日常活動之動能轉化為電能的壓電發電機中核心材料。

並列摘要


The central theme of this dissertation is mainly design and systematic exploration of advanced material performances including the following: (1) gold nanowire, (2) nickel silicide-titanium silicide (Ni2Si/TiSi2) core-shell nanowire, and (3) piezopotential nanowries. Basically, they possess two different kinds of properties, metallic and semiconducting properties, which can be applied in various applications. For metallic nanomaterials, we mainly focus on synthesis and characterization of the gold nanowires and Ni2Si/TiSi2 core-shell nanowires for applications including magnetic, electronic and field-emission properties. An innovative grow mechanism is discussed in detail based on the S-L-S process for both of metallic nanowires. Our gold nanowires exhibit outstanding properties with the lowest turn-on field of 3 V/μm and the maximum current density of 1.5 mA/cm2. Furthermore, Ni2Si/TiSi2 silicides nanowires have many interesting properties measured as well like high melting temperature, thermal stability and low resistivity. For piezopotential materials, we try to synthesize some wurtzite structure nanomaterials such as zinc oxide (ZnO) and gallium nitrite (GaN). The effect of piezopotential on the transport behavior of charge carriers is significant due to their multiple functionalities of piezoelectricity, semiconductor and photon excitation. Therefore, we also study for their various applications in energy science including self-powered LED devices, hybrid nanogenerators, and power generation from human daily activity. The results have shown the great potential of these nanomaterials in future applications. Efforts have been carried out to understand the underlying science and to enhance and glorify their possible engineering applications. The above outstanding results warrant several possible applications for (1) gold nanowires as the electron field emitters, (2) Ni2Si/TiSi2 core-shell nanowire as electronic interconnect or magneto-resistance devices, and (3) promising wurtzite structure ZnO and GaN nanowires for the energy harvester which coverts low frequency mechanical movements of human/animal into electricity in future microelectronics.

並列關鍵字

gold, Ni2Si TiSi2 core-shell nanowire piezopotential ZnO GaN LED

參考文獻


3.38. Li, Z. J.; Wen, G. H.; Wang, F. W.; Yu, J. L.; Dong, X. L.; Zhang, X. X.; Zhang, Z. D., “Magnetic properties of Ni nanoparticles and Ni(C) nanocapsules,” J. Mater. Sci. Technol. 2002, 18, 99-100.
6.20. Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J., “Single gallium nitride nanowire lasers,” Nat. Mater. 2002, 1, 106-110
Chapter 1
1.1. Alivisatos P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 1996, 271, 933-937
1.2. Murray C. B.; Kagan C. R.; and Bawendi M. G., “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 2000, 30, 545-610

延伸閱讀