透過您的圖書館登入
IP:18.222.67.251
  • 學位論文

電子與電洞傳輸層應用於高分子太陽能電池之探討

Studies on electron and hole transport layer in polymer solar cell

指導教授 : 陳壽安
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近幾年來,由於人類對替代能源的重視,因此高分子太陽能電池的發展成為一個很重要的課題。對於高分子太陽能電池而言,其活性層 (active layer)內的形貌 (morphology)與串聯電阻皆會影響整個太陽能電池的效率。也因此,在本論文中,我們著重在此二個因素對以poly(3-hexylthiophene) (P3HT)混摻 [6,6]-phenyl-C61 butyric acid methyl ester (PCBM)為活性層之太陽能電池其效率的影響。 在本論文的第一個部分,我們分別利用熱退火 (Thermal annealing)與溶劑退火 (Solvent annealing)的方式來改變活性層之形貌。在最佳化的條件下,以熱退火方式製作的元件,效率可達 3.75 %,而對以溶劑退火方式製作的元件,最佳效率可達 4 %。 在本論文第二個部分,我們則利用本實驗室自行合成的水溶性聚苯胺sulfonic acid ring substituted polyaniline (SPAN),作為太陽能電池中的電洞傳輸層,其元件效率可達 3.75 %,與以PEDOT:PSS為電洞傳輸層之元件相近 (3.9 %)。此說明了 SPAN有機會可取代 PEDOT:PSS作為太陽能電池中電洞傳輸層的材料。 在本論文的最後一個部分,我們則首先利用水溶性冠醚取代基之聚茀系高分子Poly[9,9'-bis (6'-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl)methoxy)hexyl)fluorene] (PF-18-crown-6) 當作電子傳輸層,以降低太陽能電池中的串聯電阻。相較未塗佈電子傳輸層之元件,加入此層能夠使元件效率從 2.45 %提升到 2.82 %,此意謂著 PF-18-crown-6可有效降低串聯電阻並提升元件效率。

並列摘要


In recent years, polymer solar cells have become an important issue, because of attention to alternative energy resources. For polymer solar cells, the morphology of active layer and the series resistance both play important roles in designing highly efficient solar cells.Therefore, the influence of these two factors on efficiency of polymer solar cells based on poly(3-hexylthiophene) (P3HT) blended with [6,6]-pheneyl-C61 butyric acid methyl ester (PCBM) as the active layer is investigated in this thesis. In the first part of this thesis, we use thermal annealing and solvent annealing approach to change the active layer morphology. Under the optimal condition, the device efficiency of 3.75 % and 4 % are achieved for thermal annealing and solvent annealing. In the second part of this thesis, a water-soluble polyaniline, sulfonic acid ring substituted polyaniline (SPAN), which is synthesized in our laboratory, is adopted as a hole transport layer in the polymer solar cells.The device efficiency of 3.75 % is achieved which is similar to device with PEDOT:PSS as a hole transport layer (3.9 %), and indicates that SPAN has opportunity to substitute PEDOT:PSS as hole transport layer material in polymer solar cells. In the last part of this thesis, we use water-soluble crown-ether-substituted polyfluorene, poly[9,9’-bis(6’-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl) methoxy)hexyl)fluorene] (PF-18-crown-6) as the electron transport layer for the first time to reduce series resistance in the polymer solar cells. The device efficiency can be promoted from 2.45 % to 2.82 % after insertion of this layer, which indicates PF-18-crown-6 can reduce series resistance of polymer solar cells and enhance the device efficiency.

參考文獻


[9] J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science,” Academic Press, Orlando (1984).
[12] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 914.
[13] A. Moliton and J.-M. Nunzi, Polym. Int., 2006, 55, 583.
[14] M. Knupfer, Appl. Phys. A, 2003, 77, 623.
[15] T. J. Savenije, J. M. Warman and A. Goossens, Chem. Phys. Lett., 1998, 287, 148.

延伸閱讀